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Abstract.This paper presents in details the formulation of the Johnson-Holmquist constitutive model (JH-2) for brittle
materials. The model formulation is presented within the updated Lagrangian formulation context using a stress update
algorithm fully compatible with the central difference time integration scheme commonly used in explicit finite element
code for brick elements. Details on the model implementation and validation are also presented and discussed. Finally,
an aplication of this model is shown by simulating the impact of a projectile onto a mixed ceramic-composite armour.
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1. INTRODUCTION

Nowadays, armours are made with two or more materials in order to improve the structural performance, with less
weight, more mobility and ensuring the same protection. As the prices of the materials involved in the experiments
increase, the need for developing accurate simulation tools becomes more important. New high performance armour is
composed of a ceramic plate, to avoid the armour-piercing (AP) projectiles, and a composite base, usually made with
aramid, or more recently, ultra high molecular weight polyethylene (UHMWPE), that absorbs the projectile energy and
hold fragments of the projectile and the ceramic. This work presents a numerical model for ballistic impact simulations
in hybrid ceramic/fiber reinforced composite armours. The simulations were carried out using ABAQUS/Explicit finite
element code. Four different material models have been used for this purpose: (i) Johnson-Cook model to predict the
material behavior of the projectile, (ii) JH-2 model to predict the material behavior of the ceramic, (iii) a 3-D progressive
failure model to predict the structural response of the composite base, (iv) a contact-logic to predict debonding between
the ceramic plate and the composite base. The material models (ii), (iii) and (iv) have been implemented into ABAQUS
as user defined material models within solid elements. Details on the models are given in section 2. The aim of the
model is to achieve an accurate V50, that is, the velocity at which there is a 50% probability of specimen penetration in
the armour. Different models were ran at different initial velocities, and then the results were evaluated to find out if the
armour supports the impact or the projectile defeats the armour.

2. CONSTITUTIVE MODELS

2.1 JH-2 model

2.1.1 Description of the JH-2 model

The JH-2 model is a constitutive model suitable to predict the behavior of brittle materials subjected to extreme load-
ing. The main features of the model includes pressure-dependent strength, damage and fracture, significant strength after
fracture, bulking and strain rate effects. A general overview of the JH-2 model in terms of strength is shown in Fig. 1.
The idea behind the model formulation is that the material begins to soften when damage begins to accumulate (D > 0).
This allows for gradual softening of the material under increasing plastic strain. The strength and pressure are normalized
by the strength and pressure components of the Hugoniot Elastic Limit (HEL), which allows for many constants to be
dimensionless. The strength and damage are analytic functions of the pressure and other variables allowing for parametric
variation of the constants in a systematic manner. The strength generally is a smoothly varying function of the intact
strength, fracture strength, strain rate and damage (Johnson and Holmquist, 1994).
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The normalized equivalent stress shown in Fig. 1 is defined in Eq. (1), where σ∗i is the normalized intact equivalent
stress, σ∗f is the normalized fracture strength stress and D is the damage (0 ≤ D ≤ 1) (Johnson and Holmquist, 1994).
The normalized equivalent stresses (σ∗, σ∗i , σ∗f ) have the general form given in Eq. (2), where σ is the actual equivalent
stress and σHEL is the equivalent stress at the HEL defined in Eq. (3).

Figure 1. Description of the JH-2 model

σ∗ = σ∗i −D(σ∗i − σ∗f ) (1)

σ∗ =
σ

σHEL
(2)

σHEL =
3
2

(HEL− PHEL) (3)

The HEL is the net axial stress for the Hugoniot Elastic Limit and PHEL is the pressure component of the HEL.
The normalized intact strength is given by Eq. (4), and the normalized fracture strength is given by Eq. (5), where the
normalized fracture strength can be limited by σ∗f ≤ σ∗fmax with σ∗fmax = 1 that is, σf = σHEL.

σ∗i = A(P ∗ + T ∗)N (1 + Cln(ε̇∗)) (4)

σ∗f = B(P ∗)M (1 + Cln(ε̇∗)) (5)

The material constants are A, B, C, M , N and σfmax. The normalized pressure is defined as P ∗ = P/PHEL
where P is the actual pressure and PHEL is the pressure at HEL. The normalized maximum tensile hydrostatic stress is
T ∗ = T/PHEL, where T is the maximum tensile hydrostatic pressure the material can withstand. The dimensionless
strain rate is ε̇∗ = ε̇/ε̇0, where ε̇ is the actual strain rate and ε̇0 is the reference strain rate. The damage for fracture
is accumulated in a manner similar to that used in Johnson-Cook fracture model (Johnson and Cook, 1985), and it is
expressed in Eq. (6). ∆εp is the equivalent plastic strain increment during a cycle of integration and εpf = f(P ) is the
plastic strain to fracture under constant pressure. The expression for εpf is given in Eq. (7), where D1 and D2 are material
constants. The plastic strain rate vector for a three dimensional stress state can be obtained from the Prandtl-Reuss flow
rules given in Eq. (8) (Crisfield, 2003).

D =
∑ ∆εp

εpf
(6)

εpf = D1(P ∗ + T ∗)D2 (7)

ε̇pxx
ε̇pyy
ε̇pzz
ε̇pxy
ε̇pyz
ε̇pzx


= λ̇



∂F (σ̄, σHEL, σ∗)/∂Sxx
∂F (σ̄, σHEL, σ∗)/∂Syy
∂F (σ̄, σHEL, σ∗)/∂Szz
∂F (σ̄, σHEL, σ∗)/∂Sxy
∂F (σ̄, σHEL, σ∗)/∂Syz
∂F (σ̄, σHEL, σ∗)/∂Szx


= λ̇a (8)
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Where λ̇ is the plastic strain rate multiplier and F (σ̄) is the yield function given by Eq. (9). σ̄ is the equivalent stress
which is defined in terms of the deviatoric stresses as presented in Eq. (10).

F (σ̄) = σ̄ − σHEL.σ∗ (9)

σ̄ =
√

3
[1

2
(S2
xx + S2

yy + S2
zz) + S2

xy + S2
yz + S2

zx

] 1
2

(10)

Substituting Eq. (10) into Eq. (9) the Eq. (8) can be rewritten as presented in Eq. (11). The equivalent plastic strain is
given by Sun (2002), and presented in Eq. (12). Substituting Eq. (11) into Eq. (12) we obtain Eq. (13). For plastic flow
to occur, the stresses must remain on the yield surface and hence we have Eq. (14).

ε̇pxx
ε̇pyy
ε̇pzz
ε̇pxy
ε̇pyz
ε̇pzx


=

3λ̇
2σ̄



Sxx
Syy
Szz
Sxy
Syz
Szx


(11)

ε̇p =

√
2
9

[
(ε̇pxx − ε̇pyy)2 + (ε̇pxx − ε̇pzz)2 + (ε̇pyy − ε̇pzz)2 +

3
2

[
(ε̇pxy)2 + (ε̇pyz)2 + (ε̇pzx)2

]]
(12)

ε̇p =
λ̇√
2

√
(Sxx − Syy)2 + (Sxx − Szz)2 + (Syy − Szz)2 + 6

[
S2
xy + S2

yz + S2
zx

]
(13)

F (σ̄, σHEL, σ∗) =
∂F

∂σ
σ̇ = aT σ̇ (14)

The situation described by Eq. (14) implies that during the plastic flow the stress changes σ̇ are instantaneously
moving tangentially to the surface with σ̇ being orthogonal to the vector a. Hence in the present formulation a is normal
to the surface and the flow rules invoke normality. By decomposing the total strain rate into elastic and plastic strain rate
components the stress-strain rates relationship showed in Eq. (15) can be obtained. Where C is the material stiffness
matrix which has been assumed to be macroscopically isotropic. Substituting Eq. (15) into Eq. (14) we obtain the
expression for λ̇ presented in Eq. (16). Substituting Eq. (16) into Eq. (13) results in Eq. (17).

σ̇ = C(ε̇− ε̇p) = C(ε̇− λ̇a) (15)

λ̇ =
aTCε̇

aTCa
(16)

∆εp =
aTCε̇∆T√

2aTCa

√
(Sxx − Syy)2 + (Sxx − Szz)2 + (Syy − Szz)2 + 6

[
S2
xy + S2

yz + S2
zx

]
(17)

The hydrostatic stresses are defined in terms of the pressure given by the following equation of state (EOS), Eq. (18).
K1 = E/(3(1 − 2ν)) is the bulk modulus, K2 and K3 are material constants. µ is the compressibility factor which is
given by Eq. (19). Where εν = εxx + εyy + εzz is the volumetric strain. For tensile pressure (µ < 0), P = K1µ. After
damage begins to accumulate (D > 0), bulking can occur. Now an additional incremental pressure, ∆P is added, such in
Eq. (20).

P = K1µ+K2µ
2 + k3µ

3 (18)

µ =
ρ

ρ0
− 1 = −ln(εν) (19)

P = K1µ+K2µ
2 + k3µ

3 + ∆P (20)

The pressure increment is determined from energy considerations: it varies from ∆P = 0 at D = 0 to ∆P = ∆Pmax
at D = 1. The incremental internal elastic energy decrease due to decreased shear and deviator stress is converted to
potential internal energy by incrementally increasing ∆P . The decrease in the shear and deviator stress occurs because
the strength decreases as damage increases (see Fig. 1). The expression for the elastic internal energy of shear and
deviatoric stress is showed in Eq. (21) (Johnson and Holmquist, 1994). Where G is the shear modulus of elasticity. The
incremental energy loss is defined in Eq. (22) (Johnson and Holmquist, 1994). Where U tD and U t+∆t

D are computed from
Eq. (21) using the updated stresses at the current step σt+∆t for both energies. Johnson and Holmquist (1994) shown that
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if the energy loss ∆U is converted to potential hydrostatic energy through ∆P the Eq. (23), for the pressure increment
can be obtained. Where β is the fraction of the elastic energy loss converted to potential hydrostatic energy.

U =
(σHEL.σ∗)2

6G
(21)

∆U = U tD − U t+∆t
D (22)

∆P t+∆t = −K1µ
t+∆t +

√
(−K1µt+∆t + ∆P t) + 2βK1∆U (23)

2.1.2 Numerical implementation

The JH-2 model has been implemented into ABAQUS Explicit finite element code within brick elements. The code
formulation is based on the updated Lagrangian formulation which is used in conjunction with the central difference
time integration scheme for integrating the resultant set of nonlinear dynamic equations. The method assumes a linear
interpolation for velocities between two subsequent time steps and no stiffness matrix inversions are required during the
analysis. The drawback of the explicit method is that it is conditionally stable for nonlinear dynamic problems and the
stability for its explicit operator is based on a critical value of the smallest time increment for a dilatational wave to cross
any element in the mesh. Details on the model implementation are given below in Tab 1.:

Table 1: Details on the model implementation.

Step Description Equation
1 Strain update at current time step εt+∆t

ij = εtij + ∆εij
2 Compute strain rates ε̇t+∆t

ij = ∆εij/∆t
3 Compute strain increments ∆σij = C∆εij
4 Computa trial stresses at current time step trialσt+∆t

ij = σtij + ∆σij
5 Split total trial stresses into deviatoric and hydrostactic stresses

5.1 Hydrostatic stress σt+∆t
H = 1

3 (trialσt+∆t
11 +trial σt+∆t

22 +trial σt+∆t
33 )

5.2 Deviatoric stresses Strialij =trial σt+∆t
ij − σt+∆t

H δij (1)

6 Compute total effective strain rate ε̇ =
√

2
3

√
˙ε2
xx + ˙ε2

yy + ˙ε2
zz + 1

2 (γ2
xy + γ2

yz + γ2
zx)

7 Compute equivalent σ̄ stress using Eq. (10) Eq. (10)
8 Compute normalized yield stress Eq. (4), (5), (1)
9 Check for yielding Eq.(9)

9.1 If F (σ̄) > 0 return the deviatoric stresses to the
yield surface using the radial return algorithm

Sij = (σHEL.σ∗)/Strialij

9.2 Compute the plastic strain increment ∆εp using
Eq. (17)

Eq. (17)

9.3 Compute the plastic strain to fracture εpf using Eq.
(7)

Eq. (7)

9.4 Update the damage variable D Dt+∆t = Dt + (∆εp)/ε
p
f

10 Compute the compressibility factor µt+∆t = ln(εt+∆t
ν + 1)

10.1 If µt+∆t > 0 compute pressure from equation of
state Eq. (20)

Eq.(20)

10.2 Else if µt+∆t < 0, P t+∆t = K1µ
t+∆t

10.3 If Dt+∆t > 0 compute energy loss due to damage
using Eqs. (21) and (22) with

U tD = (σ∗i −Dt(σ∗i − σ∗f ).σHEL)2/(6G)

U t+∆t
D = (σ∗i −Dt+∆t(σ∗i − σ∗f ).σHEL)2/(6G)

10.4 And compute the pressure increment ∆P t+∆t us-
ing Eq. (23)

P t+∆t = σt+∆t
H + ∆P t+∆t

11 Compute new total stress σt+∆t
ij = Sij + P t+∆tδij

12 Go to step 1

(1) δij = 1 for i = j and δij = 0 otherwise
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2.1.3 Validation

Johnson and Holmquist (1994) present three validation cases for this constitutive model. All cases involve the confined
compression and release of a ceramic material with variation of damage representation to demonstrate the response of the
model. For all three cases the model consists of a cube with sides 1.0 meter in length modeled using a single three-
dimensional element. The displacements on five faces of the element were constrained in respect to the faces normal
direction, and loaded under normal displacement control on the sixth face (top). For each test, the material was displaced
vertically downwards by 0.05 m and then released until a zero stress-state was reached. Due to bulking, the final volume
of the material was larger than the original volume resulting in a non-zero displacement corresponding to zero stress.
Table 2 present the material properties for the three validation cases.

Table 2. Material model constants.

Case A Case B Case C Unity
Density 3700 3700 3700 Kg/m3

Shear modulus 9.016 1010 9.016 1010 9.016 1010 Pa
Strength constants

A 0.93 0.93 0.93
B 0 0 0.31
C 0 0 0
M 0 0 0.6
N 0.6 0.6 0.6

Ref. strain rate 1.0 1.0 1.0
T 2 108 2 108 2 108 Pa

HEL 2.79 109 2.79 109 2.79 109 Pa
PHEL 1.46 109 1.46 109 1.46 109 Pa
D1 0.0 0.005 0.005
D2 0.0 1.0 1.0
K1 1.3095 1011 1.3095 1011 1.3095 1011 Pa
K2 0.0 0.0 0.0 Pa
K3 0.0 0.0 0.0 Pa
β 1.0 1.0 1.0

For case A, the material was defined as having no fractured strength and was not allowed to accumulate plastic strain.
As such, the material is fully damaged once the strength was exceeded. This led to an instantaneous increase in bulking
pressure of 0.56 GPa. In case B, the material was defined as having no fractured strength but was allowed to accumulate
plastic strain so that complete damage did not occur instantaneously. In this case the bulking pressure increased with
damage to a maximum value of 0.72 GPa when the material was completely damaged. Case C incorporated both fractured
material strength and the accumulation of plastic strain. A comparison between predictions obtained using the actual JH-2
implemented into ABAQUS and the results published by Johnson and Holmquist (1994) for cases A, B and C is depicted
in Fig. 2.

2.2 Johnson-Cook model

The Johnson-Cook model (1983) is a phenomenological model that is commonly used to predict the material response
of metals subjected to impact and penetration, since it can reproduce strain hardening, strain-rate effects and thermal
softening. These properties are coupled in a multiplicative manner, as shown in Eq. (24), where εpeff is the effective
plastic strain, TM is the melting temperature, TR is the reference temperature when determining C1, C2 and C4, ε̇0 is the
reference strain rate; C1, C2, C3, C4 and C5 are material constants. The fracture in the Johnson-Cook model (1985) is
based on the value of the equivalent plastic strain. Failure is assumed to occur when damage exceeds 1. The cumulative-
damage fracture model is presented in Eq. (25) and (26), where P is the pressure, σeff is the Mises stress; D1, D2, D3,
D4, D5 are failure parameters.

σy =
[
C1 + C2(εpeff )C4

](
1 + C3ln

(
ε̇peff
ε̇0

))[
1−

(
T − TR
TM − TR

)C5
]

(24)

D =
∑ ∆εpeff

εF
(25)
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(a) Case A (b) Case B

(c) Case C

Figure 2. Stress versus pressure histories for single element validation

εF =

[
D1 +D2exp

(
D3

P

σeff

)](
1 +D4ln

(
ε̇peff
ε̇0

))[
1 +D5

(
T − TR
TM − TR

)C5
]

(26)

2.3 Composite failure model

The formulation for this model is based on the Continuum Damage Mechanics (CDM) approach and enables the
control of the energy dissipation associated with each failure mode regardless of mesh refinement and fracture plane
orientation by using a smeared cracking formulation. Internal thermodynamically irreversible damage variables were
defined in order to quantify damage concentration associated with each possible failure mode and predict the gradual
stiffness reduction during the fracture process. The material model has been implemented into ABAQUS explicit finite
element code within brick elements as a user-defined material model. The criteria used to detect the different damage
modes are listed in Tab. 3. Details on the model formulation can be found in Donadon et al. (2009a). Figure 3 shows an
example, of normalized stress/damage parameter vs strain for a single element, subjected to a loading-unloading-reloading
case. It is clear from Fig. 3 the drop in the stress with increasing damage.

2.4 Contact-logic

The interfacial material behavior is defined in terms of tractions and relative displacements between the upper and
lower surfaces defining the interface. The relative displacement vector is composed of the resultant normal and sliding
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Table 3. Failure modes and criteria.

Failure mode Criterion
Fiber failure in tension σ1 ≥ XT

Fiber failure in compression |σ1| ≥ XC

Inter-fiber failure (IFF)
(
σ2
YT

)2

+
(
τ23
S23

)2

+
(
τ12
S12

)2

≥ 1

In-plane shear failure |τ12| ≥ S12

Figure 3. Element loaded-unloaded-reloaded

components defining by the relative movement between upper and lower surfaces of the contact element(see Fig. 4 (a)).
The criteria for damage initiation and damage progression are respectively given by Eq. (27) and (28). The constitutive
law for a three dimensional stress case is shown in Fig. 4 (c). Gi is the strain energy released rate defined by Eq. (29). Kii

is the interfacial stiffness in the direction ii, for i = I, II, III , and d is the damage parameter defined in Eq. (30). The
mixed-mode delamination damage onset displacement vector is given in Eq. (31), and the final resultant displacement
associated with the fully debonded interfacial behavior, is given in Eq. (32), α, and β are defined in Fig. 4 (b), and they
are the angles that define the orientation of the relative displacement vector. Details about the formulation are given in
Donadon, et al (2009b).(

σI
σ0
I

)2

+

(
σII
σ0
II

)2

+

(
σIII
σ0
III

)2

= 1 (27)

(
GI
GIc

)λ
+

(
GII
GIIc

)λ
+

(
GIII
GIIIc

)λ
= 1 (28)

Gi =
∫ δf

i

0

σidδi → σi = Kii(1− d)δi (29)

d = 1− δ̄0
δ̄

[
1 +

(
δ̄ − δ̄0
δ̄f − δ̄0

)2

.

(
2
(
δ̄ − δ̄0
δ̄f − δ̄0

)
− 3
)]

with δ̄ =
√
u2 + v2 + w2 (30)

δ̄0 =

[(
Kwwcos(β)

σ0
I

)2

+
(
Kuusin(β)cos(α)

σ0
II

)2

+
(
Kvvsin(β)sin(α)

σ0
III

)2
]− 1

2

(31)

δ̄f =
2
δ̄0

[(
Kwwcos(β)

GIc

)λ
+
(
Kuusin(β)cos(α)

GIIc

)λ
+
(
Kvvsin(β)sin(α)

GIIIc

)λ]− 1
λ

(32)
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(a) (b)

(c)

Figure 4. Contact-logic

3. BALLISTIC IMPACT SIMULATIONS

As an application example, these models were used to simulate a ballistic impact. The model consists of a composite
base of 0.1 x 0.1 x 0.01 m, with a central hexagonal ceramic plate of thickness 0.1m on the top. The projectile is 7.62 x
51 mm NATO AP made of cooper with a hard steel core. The projectile impacts at the center of the ceramic plate in the
normal to the plate direction. The finite element is shown in Fig.5. In this example, to save computational time, it was
simulate a quarter of the model only. For boundary conditions it were used: symmetry to divide the model and encastre
on the side faces of the composite base. The elements used were: C3D8R, a hexahedral element for the regular model
parts and C3D4, a tetrahedron element for the projectile’s tip. The contact used was contact inclusion with nodal erosion
available in ABAQUS finite element code. The constants used in the model are presented in Tabs. 4 and 5. Figure 6
presents the results obtained from the simulations. The figure presents the energy absorbed by armour at impact, and the
projectile initial velocity. The simulated V50 is around 790m/s as indicated in Fig.6.

Table 4: Composite failure model and Johnson-Cook constants used in the model.

Composite model Johnson-Cook
Variable Value Variable Cooper Hard steel
E1 2.5 1010 Pa C1 44 107 Pa 4.9 108 Pa
E2 2.5 1010 Pa C2 1.5 108 Pa 8.07 108 Pa
E3 3.6 109 Pa C4 0.31 0.73
ν12 0.046 C5 1.09 0.94
ν13 0.046 TM 1083 oC 1800 oC
ν23 0.046 TR 25 oC 25 oC
G12 1.08 109Pa C3 0.025 Pa 0.012 Pa
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G13 1.73 109Pa ε̇0 1 5.0 10−4

G23 1.73 109Pa D1 0.3 0.0705
XT 5.4 108Pa D2 0.28 1.732
G1T 1 105J/m3 D3 -3.03 -0.54
XC 6.43 107Pa D4 0.014 -0.0123
G1C 3 104J/m3 D5 1.12 0
YC 6.43 107Pa
S12 7.7 107 Pa
G2C 3 104J/m3

S23 5.43 108 Pa

Table 5: JH-2 and contact-logic constants used in the model.

JH-2 Contact-logic
Variable Value Variable Value

Elasticity modulus 4.4 1011 Pa Element Thickness 1.3 10−5m
Poison coefficient 0.16 E33 1 109

Hugoiont Elastic Limit 1.45 1010 Pa G13 1 109

Pressure at HEL 5.9 109 Pa G23 1 109

A 0.96 N 6 107

B 0.75 S13 1 108

C 0 S23 1 108

N 0.65 GIc 600
M 1 GIIc 2000
D1 0.07 GIIIc 2000
D2 0.48

Sfmax 1
T 3.7 108 Pa
K2 0
K3 0
β 1

Figure 5. Configuration on the ballistic impact

Figures 7 and 8 present the evolution of projectile penetrating the target. In this figure is presented the results for the
case in which Vprojectile = 900m/s. It can be seen in Fig. 7 (d), (e) and (f) the cooper jacket failing. Figure 8 (b) shows
the interface initiating failure, and Fig. 8 (f) shows the ceramic completely unstuck from the composite, indicating that
the interface has completely failed. The simulations reproduce exactly what happens experimentally when such adhesive
(epoxy) is used to bond the ceramic plate into the composite base. Figures 7 (b), (c) and (d) shows the ceramic plate
absorbing the initial impact and starting the fragmentation of the projectile. Figure 8 (j) shows the projectile significantly
smaller than its initial size, indicating that besides the velocity loss, there was also a mass loss, what is experimentally



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

proved. Analyzing the simulations it can be concluded that the set of models applied can predict accurately the energy
absorption modes and the failure mechanisms involved in armour penetration.

Figure 6. Vprojectile vs normalized absorbed energy

(a) t=0 s general view (b) t=6 µ s general view

(c) t=12 µ s details (d) t=18 µ s details

(e) t=24 µ s details (f) t=30 µ s details

Figure 7. Penetration evolution
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(a) t=36 µ s details (b) t=42 µ s details

(c) t=48 µ s details (d) t=54 µ s details

(e) t=60 µ s details (f) t=66 µ s details

(g) t=72 µ s details (h) t=78 µ s details

(i) t=84 µ s details (j) t=90 µ s details

Figure 8. Penetration evolution
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