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Abstract. Recently, the investigation of synchronization and control problem for discrete chaotic systems has attracted 
much has stimulated a wide range of research activity, including both theoretical studies and practical applications. 
This paper deals with the tuning of a proportional-integral-derivative (PID) controller based on an improved particle 
swarm optimization (PSO) method based on normative knowledge (NPSO), a source of knowledge in cultural 
algorithms, for synchronization of two identical discrete chaotic systems subject to different initial conditions. PSO is a 
kind of a population-based algorithm and is motivated by the simulation of social behavior instead of the survival of 
the fittest individual (solutions of an optimization problem). It is a population-based evolutionary algorithm. Similar to 
the other population-based evolutionary algorithms, PSO is initialized with a population of random solutions. Unlike 
the most of the evolutionary algorithms, each potential solution (individual) in PSO is also associated with a 
randomized velocity, and the potential solutions, called particles, are then “flown” through the problem space. 
Numerical simulations are given to show the effectiveness of the proposed synchronization method using NPSO.  
 
Keywords: optimization, swarm intelligence, particle swarm optimization, chaotic synchronization, chaotic systems, 
nonlinear dynamics, cultural algorithms.  

 
 
1. INTRODUCTION  

 
Chaos is a special feature of parametric nonlinear dynamical systems (Strogatz, 2000; Peitgen et al., 2004). The 

theory of chaotic dynamics has a deep impact on our understanding of Nature. The strength of this theory comes from 
its generality, in that it is not limited to a particular equation or scientific domain. It should be viewed as a conceptual 
framework with which one can capture properties of systems with complicated behavior. Obviously, such a general 
framework cannot describe a system down to its most intricate details, but it is a useful and important guideline on how 
a certain kind of complex systems may be understood and analyzed (Collet and Eckmann, 2006). 

Chaos, an apparently disordered behavior that is nonetheless deterministic, is a universal phenomenon that occurs in 
many nonlinear systems. It is featured by highly unstable motion of deterministic systems in a bounded region of the 
phase space. High instability means that the distance of two nearby orbits increases exponentially with time, which is a 
result of the extreme sensitivity of chaotic systems to the initial conditions. The Lyapunov exponents quantify this 
property (Lu et al., 2005). 

During recent years, the problem of chaos control and synchronization have received considerable attentions of 
many researchers due to its great potential in technological applications, leading to the development of many methods.  

Recent interest has peaked by the pioneering work of Pecora and Carroll (1990) showing that a drive signal from a 
chaotic system could be used to synchronize a second chaotic system. A basic configuration for chaos synchronization 
is the master-slave (drive-response) pattern, where the response chaotic system must track the drive chaotic trajectory.  

Among various control methods, control techniques based on proportional-integral-derivative (PID) design using 
meta-heuristics, such as evolutionary programming (Hung et al., 2008), differential evolution (Liu et al., 2007), 
harmony search (Coelho and Bernert, 2009a), tribes optimization (Coelho and Bernert, 2009b), and particle swarm 
optimization (Chang, 2009) have been validated for chaotic synchronization.  

In this paper, the tuning of a PID controller based on an improved particle swarm optimization approach (PSO) 
algorithm based on normative knowledge (NPSO) for synchronization of two identical discrete chaotic systems subject 
to different initial conditions. The normative knowledge, a feature of cultural algorithms (Reynolds, 1994), is useful to 
improve the convergence of the classical PSO. 
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The PSO originally developed by Kennedy and Eberhart (1995) and Eberhart and Kennedy (1995) is a population-
based swarm algorithm. Similarly to genetic algorithms (Goldberg, 1989), an evolutionary algorithm approach, PSO is 
an optimization tool based on a population, where each member is seen as a particle, and each particle is a potential 
solution to the problem under analysis. Each particle in PSO has a randomized velocity associated to it, which moves 
through the space of the problem. However, unlike genetic algorithms, PSO does not have operators, such as crossover 
and mutation. PSO does not implement the survival of the fittest individuals; rather, it implements the simulation of 
social behavior.  

The remainder of this paper is organized as follows. In section 2, a description of a discrete PID controller and the 
case study using chaotic systems are formulated. Section 3 presents the fundamentals of PSO and NPSO approaches. 
Section 4 presents the simulation results of PID’s tuning and chaotic synchronization. Lastly, the conclusion is provided 
in section 5. 

  
 
2. DESCRIPTION OF PROBLEM 

 
2.1. PID controller 

 
As modeled in this paper, the transfer function of PID controller is described by the following equation in the 

continuous s-domain (Laplace operator)  
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where U(s) and E(s) are the control (controller output) and tracking error signals in s-domain, respectively; Kp is the 
proportional gain, Ki is the integration gain, and Kd is the derivative gain. Ti is the integral action time or reset time and 
Td is referred to as the derivation action time or rate time. 

In this context, the output of the PID controller in time domain is given by (Coelho and Bernert, 2009) 
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where u(t) and e(t) are the control and tracking error signals in time domain, respectively. Using trapezoidal 
approximations for equation (3) to obtain the discrete control law, we have (Coelho and Bernert, 2009) 
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where Ts is the sampling period.  

Over the past 60 years, several methods for determining PID controller parameters have been developed. Some 
employ information about open-loop step response, for example, the Coon-Cohen reaction curve method; other methods 
use knowledge of the Nyquist curve, e.g., the Ziegler-Nichols frequency-response method (Hang et al., 2002; Cominos 
and Munro, 2002; O’Dwyer, 2006). Recently, many optimization techniques have been employed to improve the PID 
controller performance. In the present work, in order to find the controller parameters of PID, the PSO and NPSO 
approaches were used. 
 
 
2.2 Nonlinear discrete chaotic system 
 

In this study, two identical delayed discrete chaotic systems are considered to be synchronized using the proposed 
PID control. The master system is given by the following difference equation (Peng, 2004; Peng et al., 2004): 
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where δ and ε are positive constants, m is the delay term, and x is the master state. The delayed discrete system admits 
decaying, oscillatory, and chaotic behavior relying on settings of system parameters. On the other hand, the 
corresponding slave system is described by 
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where y is the slave state and u is the external control force that adopts the PID control of equation (4). For two identical 
delayed discrete chaotic systems (5) and (6) without control u, the state trajectories of these two chaotic systems will 
quickly separate each other if their initial conditions are not the same. However, the state trajectories can approach 
synchronization for any initial conditions if an appropriate controller is utilized. Hence the purpose of this paper is to 
apply the PSO and NPSO approaches to find out the optimal PID control gains such that chaos synchronization for two 
identical delayed discrete chaotic systems is achieved. 

For simplicity, the cost function F used in the study is defined as  
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where e(k) is the error signal between the master and slave states and N is the total number of sampling. The 
optimization problem involves finding g* = [Kp*, Ki*, Kd*] such that the F performance index of the system is 
minimized. 

 
 

3. FUNDAMENTALS OF PARTICLE SWARM OPTIMIZATION 
 

This section describes the proposed NPSO algorithm. First, a brief overview of the classical PSO is provided, and 
finally the proposed NPSO algorithm is discussed. 

 
 

3.1. PSO algorithm 
 
The proposal of PSO algorithm was put forward by several scientists who developed computational simulations of 

the movement of organisms such as flocks of birds and schools of fish. Such simulations were heavily based on 
manipulating the distances between individuals, i.e., the synchrony of the behavior of the swarm was seen as an effort to 
keep an optimal distance between them.  

In theory, at least, individuals of a swarm may benefit from the prior discoveries and experiences of all the members 
of a swarm when foraging (Kennedy and Eberhart, 1995). The fundamental point of developing PSO is a hypothesis in 
which the exchange of information among creatures of the same species offers some sort of evolutionary advantage. 

Similarly to other population-based algorithms, PSO exploits a population of search points to probe the search 
space. Each individual in particle swarm, referred to as a ‘particle’, represents a potential solution. Each particle utilizes 
two important kinds of information in decision process. The first one is their own experience; that is, they have tried the 
choices and know which state has been better so far, and they know how good it was. The second one is other particle’s 
experiences; that is, they have knowledge of how the other agents around them have performed. 

Each particle in PSO keeps track of its coordinates in the problem space, which are associated with the best solution 
(fitness) it has achieved so far. This value is called pbest (personal best).  Another “best” value that is tracked by the 
global version of the particle swarm optimizer is the overall best value and its location obtained so far by any particle in 
the population. This location is called gbest (global best). 

Each particle moves its position in search domain and updates its velocity according to its own flying experience 
and neighbor’s flying experience toward its pbest and gbest locations (global version of PSO).  Acceleration is weighted 
by random terms, with separate random numbers being generated for acceleration toward pbest and gbest locations, 
respectively.  

The procedure for implementing the global version of PSO is given by the following steps (Coelho, 2009): 
Step 1: Initialization of swarm positions and velocities: Initialize a population (array) of particles with random positions 

and velocities in the n dimensional problem space using uniform probability distribution function. 
Step 2: Evaluation of particle’s fitness: Evaluate each particle’s fitness value. 
Step 3: Comparison to pbest (personal best): Compare each particle’s fitness with the particle’s pbest. If the current 

value is better than pbest, then set the pbest value equal to the current value and the pbest location equal to the 
current location in n-dimensional space. 

Step 4: Comparison to gbest (global best): Compare the fitness with the population’s overall previous best. If the 
current value is better than gbest, then reset gbest to the current particle’s array index and value.  
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Step 5: Updating of each particle’s velocity and position: Change the velocity, vi, and position of the particle, xi, 

according to equations (8) and (9): 
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where w is the inertia weight; i=1,2,…,N indicates the number of particles of population (swarm); t=1,2,…tmax, indicates 

the iterations; [ ]Tiniii v,...,v ,v v 21=  stands for the velocity of the i-th particle, [ ]Tiniii x,...,x ,x x 21=  stands for the position 

of the i-th particle of population, and [ ]Tiniii p,...,p ,p p 21= represents the best previous position of the i-th particle. 

Positive constants c1 and c2 are the cognitive and social components, respectively, which are the acceleration constants 
responsible for varying the particle velocity towards pbest and gbest, respectively. Index g represents the index of the 
best particle among all the particles in the swarm. Variables ud and Ud are two random functions in the range [0,1]. 
Equation (9) represents the position update, according to its previous position and its velocity, considering 1=∆t . 

 
Step 6: Repeating the evolutionary cycle: Return to Step 2 until a stop criterion is met, usually a sufficiently good 

fitness or a maximum number of iterations (generations). 
 

3.2. Proposed NPSO algorithm 
 
Cultural algorithms are evolutionary techniques based on some theories proposed in sociology and archaeology to 

model cultural evolution, which extract information from the domain of the problem during the evolutionary process 
itself. In this context, a cultural algorithm can incorporate domain knowledge obtained during the evolutionary process 
to render the search process more efficient. The application of cultural algorithms in PSO is an alternative strategy to 
improve the convergence performance and local search (Reynolds, 1994).  

Cultural algorithms consist of three components. First, there is a population component (or population space) that 
contains the population to be evolved and the mechanisms for its evaluation, reproduction and modification. Second, 
there is a belief space that represents the bias that has been acquired by the population during its problem-solving 
process. In this work, the proposed NPSO approach employs a belief space with a normative knowledge source. 

The normative knowledge contains the intervals for decision variables (individuals) where good solutions have been 
found, in order to move new solutions towards those intervals. The l i and ui are the lower and upper bounds, 
respectively, for the i-th decision variable, and Li and Ui are the values of the fitness function. More details fo 
implementation of NPSO are presented in Coelho and Alotto (2008). 

In this work, the modification of equation (8) (classical PSO) proceeds as follows in the pseudo code of NPSO, 
where j=1,…,n are decision variables of each dimension: 
 
% Flag: boolean variable (0-false; 1–true) 
Flag = 0;  
If xij( t) < lij then 
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        Flag = 1; 
End if  

If xij( t) > uij then 
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         Flag = 1; 
End if  

 
 
4. SIMULATION RESULTS 
 

In this section, we illustrate the synchronization PID controller design for the above two systems given by equations 
(5) and (6) with different initial value conditions. The parameters δ = 3.6, ε = 1, m = 10 and initial conditions xi = 0.2 
and yi = -0.2 (i = -m,-m + 1,...,0) are used in this example. We solve the optimization problem with N = 190, kf = 80, 
Ts=1 s, and b = 0.05. 

In this section, to verify and demonstrate the effectiveness of the proposed method, we discuss the simulation results 
of synchronization between the master and slave states for the classical PSO and the NPSO approaches.  



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

Each optimization method was implemented in Matlab (MathWorks). All the programs were run on a 3.2 GHz 
Pentium IV processor with 2 GB of random access memory. In each case study, 50 independent runs were made for 
each of the optimization methods involving 50 different initial trial solutions for each optimization method. In this 
paper, the PSO approaches are adopted using 2,000 cost function evaluations in each run. The lower and upper bounds 
of the search space used in optimization methods were (Kp, Ki, Kd) ∈ [0,3]. 

In this case study, the population size was 20 particles, number maximum of generations (stopping criterion) was 
100, c1 = c2 = 2.05, and w is a linearly decreasing function during the evolutionary cycle of 0.9 to 0.4 in PSO and NPSO 
approaches. 

Optimization results of PSO and NPSO approaches in PID controller tuning for chaotic synchronization are 
presented in Table 1. It can be seen from Table 1 that with the same preset maximum number of generations, NPSO 
obtained better mean and minimum F values than classical PSO. Furthermore, the convergence curve presented in 
Figure 1 showed that the NPSO approach presented faster convergence that the PSO in minimization of F. Table 2 
presents the best results of the PID controller gains obtained using PSO and NPSO in tested example. Figure 2 shows 
the state responses of the master and slave systems using the resulting PID controller gains obtained by NPSO.  

 
 

Table 1. Convergence results for synchronization task of chaotic system in 50 runs. 

Optimization Method Minimum F Mean F Maximum F Standard Deviation of F 
PSO 2.3693 2.5255 2.7379 0.1411 

NPSO 2.3143 2.3143 2.3144 1.0734⋅10-5 
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Figure 1. Convergence (mean of best F) of PSO and NPSO in 50 runs. 

 
 

Table 2. Best results of PID controller gains and performance data using optimization method in 50 runs. 

Parameter PSO NPSO 
Kp 0.6079 0.6211 
Ki 0.1095 0.1234 
Kd 0.3073 0.3238 

Mean of error signal 0.0106 0.0095 
Variance of control signal 4.0933⋅10-4 4.6186⋅10-4 

F 2.3693 2.3143 
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Figure 2. Best result using NPSO. 

 
 
5. CONCLUSION  
 

In recent years the investigation of chaos synchronization has attracted much attention in the light of potential 
applications in engineering field.  

The contribution of this paper is to investigate the synchronization of two identical discrete chaotic systems subject 
to different initial conditions by designing a PID controller based on PSO and NPSO approaches. The proposed control 
scheme is easily implemented. A numerical example has been presented to verify the validity of the developed control 
scheme. The results have shown that the proposed controller is successful when applied to chaotic synchronization.  

As an extension of this paper, we may also incorporate the dynamic parameters updating techniques into the NPSO 
method to make it more promising in applications of PID tuning in multivariable systems.  
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