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Abstract. The objective of the economic dispatch problemREGSS electric power generation, whose charactarsst
are complex and highly nonlinear, is to scheduke¢bmmitted generating unit outputs so as to nieetaquired load
demand at minimum operating cost while satisfyihgimit and system equality and inequality consitai Recently,
as an alternative to the conventional mathemategaproaches, modern heuristic optimization technigsech as
simulated annealing, evolutionary algorithms, ndumatworks, ant colony and tabu search have begengimuch
attention by many researchers due to their abtlityfind an almost global optimal solution in EDP®n other hand,
guantum computing is a new computing paradigm tfaatthe potential to bring a new class of previgustractable

problems within the reach of computer science. Quanmechanical computers were proposed in the d£80s and
the description of quantum mechanical computers feasalized in the late 1980s. Many efforts on duenm
computers have progressed actively since the d290s because these computers were shown to bepoweful

than classical computers on various specializedbfmms. There are well-known quantum algorithms @agl$hor’'s
guantum factoring algorithm and Grover's databasarsh algorithm. Research on merging evolutionamsnputation
and quantum computation has been started sincelR®6. Inspired on the quantum computation, thisgpgresented
an improved quantum inspired evolutionary algorit{if@EA) based on diversity information of populatioA

classical quantum inspired evolutionary algorith@EA) and the IQEA approaches are validated for & &ystem
consisting othirteen unitswhose incremental fuel cost function takes intmoaat the valve-point loading effects.

Keywords: economic dispatch, thermal units, electrical aner optimization, evolutionary algorithms, quantum
computing

1. INTRODUCTION

The economic dispatch optimization problem is ofithe fundamental issues in power systems to olitamefits
with the stability, reliability and security. Itbjective is to allocate the power demand among cittedngenerators in
the most economical manner, while all physical apdrational constraints are satisfied. The cogtosfer generation,
particularly in fossil fuel plants, is very highdueconomic dispatch helps in saving a significanbant of revenue
(Chatuverdiet al., 2008).

Several optimization methods and techniques hawn blesearched. In the conventional methods suctheas
lambda-iteration method, the base point and ppgt@n factors and the gradient methods, an esserstsumption is
that the incremental cost curves of the units aomotonically increasing piecewise linear functiobat the practical
systems are nonlinear. However, conventional methiaé@ lambda-iteration, quadratically constrairpgdgramming,
gradient methods, among others, rely heavily on dbevexity assumption of generator cost curves aswhlly
approximate these curves using quadratic, pieceguselratic or higher order polynomial cost functidiiVood and
Wollenberg, 1984). When fuel cost function is apjmated by honsmooth or non-convex function, nuosnnethods
are no longer applicable. For example, practicahemic dispatch problems with valve-point and mfu#l options
are represented as a nonsmooth optimization problem

Recently, a number of meta-heuristics, for exangnteulated annealing (Basu, 2005), genetic algori{kvialters
and Sheblé, 1993), evolutionary programming (Siehal, 2003), differential evolution (Noman and Iba,08)
cultural differential evolution (Coelhet al, 2008), tabu search (Liet al, 2002), and particle swarm optimization
(Panigrahiet al, 2008) have been applied to solve the economjatts optimization problem.

In the optimization context based on meta-heusste promising area in which the combination of mjue
computation and evolutionary algorithms can be ulgef solve optimization problems like economicpditch quickly
with high quality solutions and stable convergecdkaracteristics, whereas it is easily implementielas been shown
that quantum computation can dramatically improeeiqrmance for solving problems like factoring (§ht994) or
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searching in an unstructured database (Grover,)1997 the other hand, evolutionary algorithms candescribed,
basically, as search algorithms.

In this paper, we present an improved quantum-iadpévolutionary algorithm (IQEA) based on the wofkHan
and Kim (2002) and diversity information of popidat (Ursem, 2002; Ursem, 2003; Coelkioal, 2009). In Han and
Kim (2002) is proposed a quantum-inspired evolwignalgorithm (QEA), which is based on the concemtsl
principles of quantum computation, such as quannspied bit (Q-bit) and superposition of stateskel the
evolutionary algorithms, QEA is also characteribgdthe representation of the individual, the evéduafunction and
the population dynamics. However, instead of binamymeric or symbolic representation, QEA uses hitas a
probabilistic representation, defined as the sregllait of information.

An economic dispatch problem is employed to demmatssthe performance of the QEA and IQEA approacimes
this context, a thirteen-unit test system (Siehal, 2003) with incremental fuel cost function takimgo account the
valve-point loading effects is used to illustrdie effectiveness of the QEA and the proposed IQE#od. Simulation
results obtained with the QEA and IQEA approachesewanalyzed and compared with other optimizatesults
reported in literature.

The remainder of this paper is organized as follesestion 2 describes the formulation of the ecdoadispatch
problem, while section 3 explains the fundamerddl@EA and IQEA approaches. Subsequently, sectiprodides the
simulation results for a thirteen-unit test systéastly, conclusion is given in the section 5.

2. FUNDAMENTALS OF ECONOMIC DISPATCH OPTIMIZATION P ROBLEM

The primary concern of an economic dispatch probieno minimize the total fuel cost at thermal povpdants
subjected to the operating constraints of a powstesn. Therefore, it can be formulated mathemadyiocalth an
objective function and two constraints. The eqyaitd inequality constraints are represented btiaps (1) and (2)
given by:

n
YR-P -Pp =0 (1)
i=1
lein < PI < leax (2)

In the power balance criterion, an equality cornistrenust be satisfied, as shown in equation (1) gknerated
power should be the same as the total load demasddgial line losses. The generating power of egaterator should
lie between maximum and minimum limits represertgequation (2), wherd is the power of generato(in MW);

n is the number of generators in the syst®m;is the system’s total demand (in MW, represents the total line

losses (in MW) andR™"and P™3 are, respectively, the output of the minimum anaiximum operation of the
generating unit (in MW). The objective of minimization of the tdfaiel cost function is formulated as follows:

min f :_%Fi(a ) ©)

where F; is the total fuel cost for the generator ur{it $/h), which is defined by equation:

F(R)=aR?+bR +g 4)
wherea; , bj andc; are cost coefficients of generator

The sequential valve-opening process for multi-eateam turbines produces ripple like effect inttbat rate curve

of the generator. This effect is included in ecomodispatch problem by superimposing the basic catadfuel-cost
characteristics with a rectified sinusoidal comptnén this context, the equation (4) can be medifas:

F.(R)=F(R) +[esin; (™ - R)| or ®)

F(R)=a R +bR +g +‘e|Sin(fi (Fﬁmin - Fﬁ)} (6)
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where g and f; are valve-point loading coefficients of generatddence, the total fuel cost that must be minimjzed
according to equation (3), is modified to:

min = _%Ei (R) (7)

where IEI is the cost function of generatoin $/h) defined by equation (6). In the case gtpdesented here, we
disregarded the transmission lossEs, (mentioned in equation (1)), i.e., in this wofk =0.

3. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHMS

Since Deutsch first proposed the Deutsch-Jozsaitidgoin 1985 (Deutsch, 1985), quantum computatias been
widely drawing the attention of many researchersfdonmulation of new optimization approaches. Quantu
computation is a novel inter-discipline that inasdquantum mechanics and information science. &hisrgent
research field concentrates on studying quantunpatetion, which is characterized by certain prifespof quantum
mechanics such as interference, quantum bits, enberand superposition of states (Nedjaal, 2008).

Quantum-inspired evolutionary algorithms can bevei@ as probability optimization algorithms basedgoantum
computation concept and theory. Recently, some tquaimspired evolutionary algorithms have been pswmul for
some combinatorial (Han and Kim, 2000, 2002, 208d) continuous (Abs da Cruzt al, 2004) optimization
problems.

The next section describes the QEA proposed by &fah Kim (2002). First, a brief overview of the QH#\
provided, and finally the proposed IQEA algorithepresented.

3.1. QEA

Han and Kim (2002) proposed the QEA introducing-gafe as a variation operator to promote the opttion of
the individual Q-bit. QEA uses Q-bits (Q-bit is ohefd in Han and Kim (2002) and means quantum-iespiit, which
is different from qubit or quantum bit) as the skestl unit of information for representing individsaA Q-bit-coded
individual probabilistically represents all thetstin the search space. The individuals are ugdateuantum rotation
gates, which can achieve an evolutionary search.

Unlike the classical bit, the Q-bit does not reprénly the value 0 or 1 but a superposition efttho. Its state can
be given by:

ly=al0)+B1D 8)

where |0) and |1) represent respectively the classical bit valuead 1;a andfare complex numbers that specify the
probability amplitudes of the corresponding quantiate. Normalization of the state to unity alwgyarantees:

la P +|BIP=1. (9)

If a superposition is measured with respect to tmsh{|0) , |1) }, the probability to have the value 0 |igr |2 and the

probability to have the value 1 |8 |2. In classical computing, the possible states i system form a vector space

of n dimensions, i.e. we havé fossible states. However, in a quantum system@tbits the resulting state space has
2" dimensions.It is this exponential growth of the state space viit number of particles that suggests a possible
exponential speed-up of computation on quantum coenp over classical computers. Each quantum aperaill deal with
all the states present within the superpositiorairaltel.

The representation ofre-Q-bit individual is defined as follows:

Bi|Ba2| | Bm
where | g; |2 +| 5 |2=1, i =12,---,m. Q-bit representation has the advantage that #@bie to represent a linear

superposition of states probabilistically. Furtherey in this way, then-Q-bit individual is able to represent the
information of 2" binary states simultaneously.
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For the update process of QEA, suitable quantum g4\g) is usually adopted in compliance with optimization
problems. In this work, a quantum rotation gatehsas

08 _[@s@a) —sin(Aei)} (11)
sin(Ag) cos@8)

is adopted as a basic gate of QEA, wha®,i =1,...,m is the rotation angle of each Q-bit toward eitbesr 1 state
depending on its sign. The values A8 ,i =1,...,m should be designed in compliance with the appboaproblem.

Then let us briefly review the procedure of QEAFigure 1. For more details the reader is refercetian and Kim
(2002).

Procedure QEA
Begin
initialize the generation counter 0
initialize the population of Q-bits individualX(t)
makeP(t) by observing the states Qft)
convertP(t) from binary to floating point representatiBy(t)
evaluate the solutions given by floating pogfinesentatiof,(t)
store the best binary individuals amd?(g) into B(t) and its fithess
while (not stopping condition) do
begin
update the generation counter,t + 1
makéP(t) by observing the states @Qft-1)
converP(t) from binary to floating point representatiBy{t)
evaluate the solutions given by floatpuint representatioR,(t)
updat&(t) using suitable quantum gates (in this work, antjua rotation gate)
store the bests binary individuals amB(ty andB(t-1) into B(t) and its fitness
store the best binary individiesamongB(t)
if (global migration condition) then
migrat® to B(t) globally
else

if (local migration condition) therignate btj in B(t) to B(t) locally

end
end
End

Figure 1. Pseudocode of QEA for continuous optitrizra

In Figure 1,Q(t) = {qi, oy q;} is a population of Q-bit individuals at generatian q} is thejth (j =2,2,---,n)
individual defined as

at at
q = i im (12)
¥

Bim
and P(t) = {x; xtz,---,xt} is a set of binary solutions from observing tratest ofQ(t), where x; is the binary solution

n

t
ai,

A

by observingq; (j=12---,n). A set ofn binary solutionsBit) ={b;,bt,---,b;} is maintained at the generatign
where btj is the besjth binary solutionxj between the generations 0 dnhlis the best binary solution amoB(}).

In the ‘initialize Q(t)’ step, each pair of Q-bit probability amplitudes}l and ﬁ}i ,1=12,---,m, are initialized with
142, Og. 0Q(t) - The next step generates a set of binary soluti(ty :{xi,xg,---,x‘} where each bit ofx;,

n
=12---,n, is formed by determining the explicit state -bit of . , state or|1) state, according to either
i is f d by d ining th lici otle®)-bi qu 0) D di ith

|C)’}i I or |,[?}I I of q} ,1=12,---,m For example, to form a explicit stateit bit of x| (i =12,---,m) a numbeh
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in range [0,1] is generated randomly with uniforistdbution. Then, ifh < |,8}i | theith bit of x‘j is set to be 1,

otherwise, it is set to be 0. Each squtimjﬂ P(t), j =12:---,n, is a binary string of lengtim, and is evaluated to give

some measure of its fitness. However, before etialpahe solutionsP(t) is converted from binary to floating point
representatiof,(t). The initial binary solution®(t) are stored iB(t), and the best binary solutidmamongB(t) is then
selected and stored. In the while loop, the quargateU (A) is used to updat®(t-1) so that fitter states of the Q-bit

individuals are generated. Tha Q-bit value(a'it,ﬂit) of qtj is updated as

a™ a'| |codAd') -sinlad)| at
It+1 =U (Aeit It = : It ( tl ) It . I13
B B sinfAg cos(A@i ) B
The best solutions amom(t) andB(t-1) are then selected in the next step, and ib#wt current solution is fitter
than the best stored solution, the best storedisnlwill be replaced by this current solution.
Figure 2 depicts the polar plot of the rotationegfatr Q-bit individuals. In the economic dispatablgem evaluated

in this work, the angle parameters and lookup tébde Table 1) used for the rotation gate of atas<PEA are the
same adopted in Han and Kim (2002). In this wofk,= 00577, 65 =-00577, and O for the rest were used. The

magnitude ofAg has an effect on the speed of convergence, liisitoo big, the solutions may diverge or coneerg
prematurely to a local optimum. The sign®# determines the direction of convergence (Han aina, R002).
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Figure 2. Plot polar of the rotation gate for Qihdividuals.

Table 1. Lookup table o4 .

X; b; f(x)= f(b) A8
0 0 False 6
0 0 True &,
0 1 False 63
0 1 True 6y
1 0 False s
1 0 True G
1 1 False 6,
1 1 True Gs
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If the global migration condition is satisfied, thest solution is migrated tB(t) globally. If the local migration
condition is satisfied, the best one in a localugran B(t) is migrated to others in the same local grouge Trtigration
process can induce a variation of the probabilibésa Q-bit individual. A local group in QEA is deéd as the
subpopulation affected mutually by a local migrafiand its size is the number of individuals in libeal group (Han
and Kim, 2006).

In terms of stopping criterion, a limit of geneaaticountet,,.is adopted.

3.2. Proposed IQEA

The proposed IQEA adoptednaT gate to tune the Q-bits if the best fithess did ingirove while the following
relation is satisfied:t( t,ay) > 0.01. In this case, a positionf Q-bit individual at generationis sorted and thieh Q-bit

value (a’it,,é’it) is updated using the NOT gate. The NOT gate hé&s &Dapplication probability. This procedure has

inspiration in mutation operation used in seveval@tionary algorithms.

Choosing suitable control parameter values in QEArequently, a problem dependent task and regjpirevious
experience of the user. Despite its crucial impuarga there is no consistent methodology for detamgithe control
parameters of evolutionary algorithms, which ar@stmof the time, arbitrarily set within some prededl ranges
(Maruoet al, 2005).

In context of population-based algorithms, an ative and repulsive approach was introduced by tdr§2002)
and Ursem (2003), in particle swarm optimizatiorsige, and other modified diversity measure wasoohiced in
Coelho et al. (2009), in a differential evolutioppaoach to escape from the current local optimumsés a diversity
measure to control the population. The result gowerful algorithm that alternates between phagestaction and
repulsion. The application of diversity measures loa an alternative strategy to improve the coremeeg performance
of QEA with adaptive evolution mechanism.

The trade-off between the exploration (i.e. thébglesearch) and the exploitation (i.e. the locarsl) of the search
space is critical to the success of a QEA approa@hb.tuning of rotation angl&g given by Table 1 is a key factor

affecting the QEA’s convergence proposed in Hankina (2002).

In this paper, it is proposed the following rule tbe tuning of 83 and 65 (zero for the rest was used) using a
diversity measure based on the number of 1B(b) ={X;xt2 xt}. In context of IQEA, the adopted approach to

' n
tune the rotation anglé is given by pseudocode of Figure 3.

If f>fbest andP;(t) = 0 andB;(t) =0
63 = (1-sum(P; (1)) Lz ;

End

If f>fbest and x; = 1 andB;(t) =0
65 = -1 -sun(P; (1)) Lz,

End

Figure 3. Pseudocode of IQEA.

4. SIMULATION RESULTS

This case study consisted of 13 thermal units ofegation with the valve-point effects, as givenTible 2. The
system data shown in Table 2 is also availabldnheget al (2003) and Wong and Wong (1994). In this caseJdad
demand expected to be determined Wgs=1800MW.

Each optimization method was implemented in Ma{stathWorks). All the programs were run on a 3.2 GHz
Pentium IV processor with 2 GB of random access argnin each case study, 30 independent runs wede rfor
each of the optimization methods involving 30 diffiet initial trial solutions for each optimizatiomethod.

The total number of Q-bits adopted was the poputasize ) times the number of bits per solutian)(i.e., 20 x
416 = 8320. The criterion stopping was 1000 germrst A key factor in the application of optimizati methods is
how the algorithm handles the constraints relatmghe problem. In this work, a penalty-based méthwspired in
Noman and Iba (2008) was used. In this contexaviuid the violation of equality constraint given éguation (1) of
the power balance criterion, a repair process diegh to each solution in order to guarantee thgéerated solution
by QEA or IQEA will be feasible.

Numerical results obtained for this case studygiven in Table 3 and Figure 4, which shows thatIPEA has
both a better economic cost and lower mean cost tthe classical QEA. The best results obtainedsédution vector
P;, i=1,..,13 with HIS with minimum cost of 17961.218M is given in Table 4. Table 5 compares the tesabtained
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in this paper with those of other studies repoitethe literature. Note that in the studied cake,liest result reported
here using IQEA is comparatively lower than recgtatlies presented in the literature.

Table 2. Data for the benchmark of 13 thermal units

Thermal unit Hmin pmax a b c e f
1 0 680 0.00028 8.1( 550 300 0.085
2 0 360 0.00056 8.1( 300 200 0.042
3 0 360 0.00056 8.1( 30f 150 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063
10 40 120 0.00284 8.60 126 100 0.0B4
11 40 120 0.00284 8.60 126 100 0.0B4
12 55 120 0.00284 860 126 100 0.0B4
13 55 120 0.00284 860 126 100 0.0B4

Table 3. Convergence results (50 runs) of a casty sif 13 thermal units with valve point af, =1800MW.

Optimization Maximum Minimum Mean Standard
Method Cost ($/h) Cost ($/h) Cost ($/h) Deviation ($/h)
QEA 18555.3135 18198.4452 18336.8580 128.4785
IQEA 18416.2340 17961.2170 18268.1944 119.5887

x 10
1.91

1.9F B

1.891 B

1.88

1.87

1.86

1.85

1.84

1.83) el 1

1.82 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

generations

Figure 4. Convergence of mean of begtlue for QEA and IQEA approaches in 30 runs.
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Table 4. Best result (50 runs) obtained for thecdady using IQEA.

Power | Generation (MW), Powef Generation (MW)
P, 628.3187 P 109.8666
P, 224.4007 5 109.8667
Ps 147.9028 B 40.0201
P, 109.8666 P 40.0015
Ps 109.8666 P 55.0115
Ps 109.8667 P 55.0025
P; 60.0090 13
E R 1800.0000

Table 5. Comparison of results for the econadfispatch optimization problem with 13 thermal units

Optimization Technique Objective function
Cultural differential evolution (Coelhet al, 2008) 17963.94
Differential evolution (Noman and Iba, 2008) 17963.83
Genetic algorithm based on differential evolutibte gt al, 2008) 17963.83
Hybrid differential evolution (Wangt al., 2007) 17975.73
Improved evolutionary programming (Sinégal, 2003) 17994.07
Particle swarm optimization (Victoire and Jeyakun2904) 18030.72
Self-tuning hybrid differential evolution (Wargg al, 2007) 17963.79
Best result of this paper using IQEA 17961.2170

5. CONCLUSION

Recently, Han and Kim (2002) proposed QEA, for migation problems, where the Q-bit representatias w
adopted based on the concepts and principles aitgoacomputing. The characteristic of the represtent is that any
linear superposition can be represented. The sshall@it of information stored in a two-state quamtaomputer is
called Q-bit, which may be in the “1” state, in tf@8 state or in any superposition of the two.

In this paper, inspired on the principles of quamttomputation and its superposition of states, daseQ-bits and
diversity measure, IQEA was proposed. The perfoomani the IQEA was compared with classical QEAvdis found
that IQEA approach handles the problem of prematoreergence found in classical QEA effectivelytbging of
rotation angle A@ using an adaptive approach based on diversity unead-urthermore, the proposed IQEA

outperformed other methods reported in literataréerms of best solution for the thirteen-unit demark system of
economic dispatch problem.
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