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Abstract. The performance of different criteria for vortex identification available in the literature is investigated for a
number of special flows emphasizing the results obtained for chaotic laminar and turbulent flows. The so called ABC flow
(u,v,w)=(A sin z + C cos y, B sin x + A cos z, C sin y + B cos x) is an interesting example of a laminar Trkalian Beltramian
flow (with no Lamb surfaces) exhibiting chaotic behavior. The LES results for the 3-D cavity in the turbulent regime is
another flow investigated. For every criterion (such as Q, Delta, lambda 2, etc) selected from the literature, it is created an
objective (frame indifferent) version by simply substituting the vorticity by the relative (or absolute) vorticity, the vorticity
as measured by an observer attached to the frame of the eigenvectors of the rate-of-strain tensor. Additionally, a new
vortex definition based on the non-alignment of the rate-of-strain tensor and its covariant convected time derivative is
compared with classical definitions.
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1. INTRODUCTION

1.1 The vortex definition problem

The word vortex is frequently used when one wants to describe, understand, and explain flow patterns in fluid dynamic
problems, but the connection of this entity to a rational definition is controversial. The main reason for this is the lack of
agreement on what are the requisites a vortex should have. Is the vortex an entity that should be defined by a kinematic
or a dynamical criterion? Should a vortex be defined by Lagrangean or Eulerian quantities? The definition of a vortex
should be Galilean invariant or objective? Should it have subjective thresholds or must be problem-independent? Should
we seek for a definition looking at the velocity gradient only or do we have to observe acceleration gradients also?

These questions do not have a consensual answer and are in the very heart of the controversy. The most used mathe-
matical criteria for vortex identification are listed below. For a brief description, the reader is referred to an accompanied
paper entitled "What is a vortex?" to be presented in this same congress.

1.2 Most usual criteria

Hunt et al. (1988) define a vortex as a connected region in space where

Q =
1
2

(
|W|2 − |D|2

)
> 0 (1)

where W and D are, respectively the skew-symmetric and symmetric parts of the velocity gradient and the operator
| | indicates the Euclidean norm of a tensor.

Chong et al. (1990) define a vortex as a connected region in space where there are a real and two complex conjugates
eigenvalues of the velocity gradient. This is the so-called ∆− criterion given by

∆ =
Q3

27
+
III2

L

4
> 0 (2)

where IIIL is the third invariant (determinant) of the velocity gradient.
Another very important criterion in the literature was proposed by Jeong and Hussain (1995). This criterion defines a

vortex as a connected region where

λD2+W2

2 < 0 (3)

where λD2+W2

2 is the intermediate eigenvalue of tensor D2 + W2.
Tabor and Klapper (1994) presented a systematic study on the stretching and alignment dynamics in general 2D and

define a region of rotation-like behavior as

QD =
1
2

(
|W −Ω|2 − |D|2

)
> 0 (4)
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where Ω, measures the rate of rotation of the eigenvectors of D, defined as

Ω = ėDi eDi . (5)

where eDi is an eigenvectors of D.
Zhou et al. (1999) defines a vortex as a connected region where where

λ2
ci > δ (6)

where λci is the imaginary part of the two complex eigenvalues of the velocity gradient and δ is a threshold generally
chosen as percentage of its maximum value.

Chakraborty et al. (2005) proposed a further step on the analysis of Zhou et al. (1999) by adding to the swirling
strength criterion, λ2

ci > δ a condition on the inverse spiraling compactness, λcr

λci
of the form

λcr
λci

> ε (7)

1.3 Creating objective criteria

The above mentioned criteria are non-objective. It is interesting to notice that these criteria can have an objective
counterpart if we change the vorticity (a non-objective quantity) to the relative vorticity, that is the vorticity as seen by an
observer attached to the eigenvectors of the rate-of-strain. Therefore, we can see how these new objective criteria perform
in general flows.

1.4 A new criterion

A new criterion can be constructed by considering the persistence-of-straining tensor. As shown by ? this quantity can
be related to a competition between hyperbolic and elliptical types of flow. The persistence-of-straining tensor is defined
as

P = DW −WD (8)

1.5 The present work

In the present work we test usual criteria of the literature as well as a new one proposed recently for two important
flow problems chosen in order to identify rotation-like (elliptical) regions and stretching-like (hyperbolical) regions: the
laminar ABC flow and the 3D turbulent cavity flow.

2. ABC FLOW

The ABC flow is a classical flow due to its chaotic behavior even for laminar flows (Dombre et al., 1986).

2.1 Lamb vector and helicity density

The local geometrically orthogonal decomposition of the velocity vector v with respect to the vorticity vector w
introduces two quantities of crucial importance in vorticity dynamics: the vector w × v, known as Lamb vector, and the
scalar w · v, known as helicity density. The two interesting non-trivial cases are when the helicity density or the Lamb
vector vanishes. When w · v = 0 and w × v 6= 0, the flow is called complex lamellar flow. It exists if and only if

v = λ∇ξ (9)

where ξ = const are equi-potential surfaces orthogonal to the streamlines everywhere (potential flow, also called lamellar
flow, is obtained when λ = 1) . When w × v = 0 and w · v 6= 0 the streamlines are parallel to the vorticity lines, or

w = ζv (10)

which implies that the velocity is an eigenvector of the curl operator. This kind of flow is called Beltrami (or helical) flow.
If ζ is constant, the flow is specifically called Trkalian.

When the Lamb vector is a complex lamellar field or

(w × v) · [∇× (w × v)]⇒ w × v = g∇h (11)

there exist a set of surfaces h = const, called Lamb surfaces which are orthogonal to the Lamb vector everywhere. It
can be shown that the existence of the Lamb surfaces imply the integrability of the system and therefore this kind of flow
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cannot be chaotic. Therefore, A Beltramian flow is a candidate of a chaotic flow. However, if ∇ζ 6= 0 the velocity is still
integrable, since the velocity will be on the surfaces normal to ∇ζ. Therefore, the only possibility of an incompressible
chaotic steady flow is when∇ζ = 0, where the flow is Trkalian.

Arnold (1965), seeking steady inviscid chaotic flow, proposed a Trkalian flow where ζ = 1 or w = v. The ABC flow
in cartesian coordinates is given by

u = A sinz + C cosy

v = B sinx + A cosz

w = C siny + B cosx (12)

2.2 Results for the ABC flow

Figure 1. Anirat-b1.

Figure 2. Anirat-b2.

Figure 6 shows the values of the isotropic normalized ratio that compares linear acceleration deformation, in the sense
provided by the covariant convected time derivative, to angular acceleration gradient (in the same sense). Higher values
correspond to hyperbolic-like behavior.
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Figure 3. Anirat-b3.

Figure 4. Anisotropic ratio at the plane defined by the relative rate of rotation vector.

One of the three fields of anisotropic index associated to a line-method is shown in Fig. 7. Since the orientation of
the index is different depending on the point considered, we have decided to produce indexes based on the comparison
between the three anisotropic indexes of each method. What is shown in Fig. 7 is related to the highest (among three)
value of the tendency to evolve persistently the same material line.

3. THE 3D CAVITY

3.1 LES

Large Eddy Simulation methodology is about filtering of the equations of movement and decomposition of the flow
variables into a large scale (resolved) and a small scale (unresolved) parts. The filtering process is applied on the governing
equations for separate the fields that contains the large and sub-grid scales. After performing the volume averaging, the
filtered Navier-Stokes equations become

∂
(
ρŪ

)
∂t

+∇ ·
(
ρUU

)
= −∇p+ µ∇2Ū + fB (13)



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Developing the non-linear transport term and introducing the sub-grid scale (SGS) stresses τ = ūu − ŪŪ, the filtered
Navier-Stokes equations can be rewritten as

∂
(
ρŪ

)
∂t

+∇ ·
(
ρŪŪ

)
= −∇p+ µ∇2Ū−∇ · (ρτ ) + fB (14)

The dynamic sub-grid scale model was used with the Large Eddy Simulation to obtain the sub-grid scales. In this
sub-grid model the proportionality coefficient is computed as a function of time and space. As a consequence, some
difficulties on finding a correct constant value in heterogeneous meshes, as in the Smagorinskyńs model are avoided.

The expression that defines the turbulent viscosity, µT can be written as

µT = C∆2 ||D|| (15)

whereC is the proportionality coefficient, calculated in CFX along time and space as a function of the velocity fluctuations
and the rate of strain tensor and is the length scale of the grid filter.

3.2 Description

The first experimental results for lid-driven cavity flows was published in the work of Koseff and Street (1984), show-
ing the three-dimensionality of the problem. The main characteristic of this kind of flow is the secondary vortices observed
in the upper corners and a primary one along the complete space. Results from Migeon el al. (2003) considered parallel
unsteady, three dimensions lid-driven cavity and have shown the development of Taylor-like vortices. Recent works from
Ku et al. (1987) and Babu and Korpela (1994) show the comparison between two and three-dimensional simulations and,
agreeing with the work of Koseff and Street (1984), their results shown a great difference in the development of vortical
structures in both cases. Direct numerical simulations approach were performed in the work of Leriche and Gavrilakis
(2000) and large-eddy simulation by Zang et al. (1993), Deshpande and Milton (1998), Hassan Barsamian (2001). These
works compared the results with the experimental data from Koseff and Street (1984) and show statiscal characteristics
and the evolution of coherent structures. Recent work from Padilla (2008) showed the power spectra and the streamlines
for parallel and non-parallel cavities for Reynolds up to 3000. In this paper will be present a comparison between many
vortical structures identification criteria in a parallel lid-vortex cavity for Reynolds number equal to 10000.

3.3 Results for the 3D cavity

Figure 5. Isosurfaces of ∆.

4. FINAL REMARKS

We have presented two application of the theory developed in an accompanied paper concerning flow classification.
The general results are complex in nature and the full interpretation are in order. We would like to observe that there a
huge quantity of results that were impossible to add to the present article due to the limiting memory space.
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Figure 6. Isosurfaces of isoratio.

Figure 7. Isosurface of λ2.

5. ACKNOWLEDGEMENTS

We would like to acknowledge CNPq and FAPERJ for financial support.

6. REFERENCES

Arnold, V., 1965. Sur la totologie des ecoulements stationaires des fluide parfaits. C. R. Acad. Paris A261, 17–20.

Chakraborty, P., Balachandar, S., Adrian, R., 2005. On the relationships between local vortex identification schemes.
Journal of Fluid Mech. 535, 189–214.

Chong, M., Perry, A., Cantwell, B., 1990. A general classification of three-dimensional flow field. Physics of Fluids 2,
765–777.

Hunt, J., Wray, A., Moin, P., 1988. Eddies, strem, and convergent zones in turbulent flows. Center for Turbulence Research
Report CTR-S88.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Jeong, J., Hussain, F., 1995. On the identification of a vortex. J. Fluid Mech. 285, 69–94.

Tabor, M., Klapper, I., 1994. Stretching and alignment in chaotic turbulent flows. Chaos, Soliton, and Fractals 4, 1031–
1055.

Zhou, J., Adrian, R., Balachandar, S., Kendall, T., 1999. Mechanisms for generating coherent packets of hairpin vortices
in channel flow. J. Fluid Mech. 287, 353–396.

7. Responsibility notice

The author(s) is (are) the only responsible for the printed material included in this paper


