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Abstract. This  work  aims  the  study  of  inelastic  non-Newtonian  flows  employing  quasi-Newtonian  fluid  models  
sensitive to the flow type. These models use a kinematic parameter of flow classification and the flow curves in  
viscometric and extensional regimes to represent the fluid behavior from pure shear to pure extensional flow regions  
in a weighted manner. Multi-field formulations with strain rate, pressure and velocity as primal variables (D-p-u),  
are a quite attractive alternative to numerical approximations for quasi-Newtonian fluid flows, because they allow  
the use of low-order elements with a still good precision in the determination of the flow classification parameter. In  
the numerical approximations undertaken in this article, a Galerkin-least-squares-like stabilized method has been  
used  in  order  to  circumvent  the  compatibility  conditions  involving  the  finite  element  sub-spaces  for  the primal  
variables. Besides, the GLS-like strategy was able to stabilize the intrinsic numerical oscillations due the asymmetric  
features of advective operators in the motion equation. Some two-dimensional numerical simulations were shown to  
validate  the  computational  implementation  of  the  introduced  multi-field  stabilized  formulation.  Numerical  
investigations of quasi-Newtonian fluids through a plane contraction have been carried out. The Carreau equation  
was employed to model both pure viscometric and extensional behaviors, and the values of the power-law parameter  
were varied from 0.2 up to 2.5 in pure extension, in many combinations. The high viscosity zones near the contraction  
and the normal stresses and velocity profiles were discussed, showing the physical meaning of flow-type sensitive  
models. The stabilized method have proven to be stable and able to generate comprehensive approximations for all  
simulated problems. 

Keywords: Flow classification, Flow-type sensitive fluids, Quasi-Newtonian fluids, Multi-field formulations, Galerkin  
least-squares.

1. INTRODUCTION 

Non-Newtonian materials are present in a broad class of fluid applications in different engineering fields, such as 
emulsions,  polymer  melts  and  solutions,  food  products,  biological  fluids,  drilling  muds  and  heavy  oil  from  the 
petroleum industry, asphalts and so many others.

The  limited  performance  of  some  classical  differential  viscoelastic  fluid  models,  which  may  failure  either  in 
generality  or  in  the  quantitative  representation  of  rheological  experimental  data,  added  to  the  difficulty  in  the 
implementation of such models with usual numerical methods, has encouraged non-Newtonian fluid researchers to look 
for simpler constitutive models still capable to characterize fluid behavior in relevant engineering applications.  The 
experimental verification of the distinct behavior of non-Newtonian fluids in pure shear and extensional flows – namely 
shear-thinning and extensional thickening – along with the prediction of fluid behavior in mixed-type flows has been 
some of the first questions to be thought of. Flow classification criteria, since the pioneer work of Astarita (1979), have 
introduced a theoretical starting point for the  identification of such an application. Later,  the works of  Schunk and 
Scriven (1990), Thompson and Souza Mendes (2005) and references therein, have discussed some of the major quests 
related to flow-classification, and formed the basis for the proposition of flow-type sensitive flow models, which have 
become an interesting alternative for industrial non-Newtonian applications (see Thompson  et al., 1999; Ryssel and 
Brunn, 1999). Most of the flow-type sensitive models have the features of predicting complex fluid behavior and being 
made of simple mathematical equations, hence they are called quasi-Newtonian. 

The quasi-Newtonian equations have the advantage to allow simultaneously both shear-thinning behavior in pure 
shear flows and extensional-thickening in pure extensional flows and also to weight between these two behaviors in 
mixed  flows.  In  the  quasi-Newtonian  model  addressed  in  this  work,  the  viscosity  function  depends  on kinematic 
parameters related to the flow type.
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The quasi-Newtonian fluid flows considered in this  article  have been approximated via  a multi-field  stabilized 
method based on the Galerkin least-squares (GLS) strategy. This method was  employed to avoid undesirable numerical 
pathologies  –  such  as  spurious  oscillations  and  locking  –  to  which  the  classical  Galerkin  formulation  would  be 
susceptible.  Hence,  the  stabilized  method  employed  herein  has the  ability  to  circumvent  the  inf-sup compatibility 
conditions involving the finite element sub-spaces for velocity-pressure – the so-called Babuška-Brezzi condition – and 
for stress-velocity fields. In addition, the method is still able to generate stable approximations for flows subjected to 
high geometrical and material non-linearities, preserving good accuracy properties (Franca and Frey, 1992). This is 
achieved by adding residual-based terms to the classic Galerkin formulation, retaining its weighted residual structure 
and not damaging its consistency.

In this article, quasi-Newtonian fluid flows through a four-to-one sudden contraction with a rounded corner have 
been simulated. The numerical simulations have been performed by a multi-field stabilized method with strain rate, 
velocity and pressure (D-p-u) as primal variables. For low Deborah flows, four different flow-type sensitive fluids have 
been considered: a Newtonian fluid, a shear-thinning fluid only in pure shear flows, an extensional-thickening fluid 
only in extensional flows and a shear-thinning and extensional-thickening fluid. For all flows, the distribution of the 
flow classifier has been evaluated, all of them showing extensional region near the contraction plane and pure shear 
flows far away the contraction. The velocity, pressure, stress and viscosity fields have also been studied. The normal 
stress growth in the contraction zone could be detected, and the velocity profiles in these zones have been studied. All 
results showed good agreement with the literature and were found physically comprehensive, indicating that both the 
numerical method and the constitutive model could be of great use.

2. THE MECHANICAL MODEL

Although Cauchy theorem describes the form of contact forces for any continuous mechanical body, the way in 
which materials deform under arbitrary dynamic conditions is not stated by this theorem. In addition, the behavior of 
continuous bodies drastically differs with respect to the relation between internal contact forces (accounted by the stress 
tensor, T = τ + p1) and their motion and deformation. This relation is described by the material constitutive equations.

The constitutive equation for the extra-stress tensor, τ , used in this work, is of a purely viscous fluid, so the model 
may be considered one of a quasi-Newtonian fluid. This model is given by 

=2 Rr , II DD     (1)

where the viscosity, η, is a function of the flow classifier, Rr, and of the second invariant of strain rate tensor D, IID. 
The flow classification function proposed by Thompson and Souza Mendes (2005) has been adopted with some light 

modifications. The original kinematic flow classifier RR assumes the value of 0 for pure extensional flows, 1 for pure 
shear flows and tends to infinitive for rigid body motion. Following the idea of Ryssel and Brunn (1999), one may build 
a bounded flow classifier,  Rr, that has the maximum value of 2 when the kinematics is the one of rigid body motion, 
keeping the same values for pure shear and extension:

R r=
2R R

1R R
    (2)

The viscosity function considered herein has been given by a weighted mean between the shear viscosity, ηs, and the 
extensional viscosity, ηex, both of them independently constructed according the Carreau equation,

=s
f R r ex

1−f R r 

s=0 1s ̇ 
2n s−1 /2

ex=0 1ex ̇ 
2n ex−1 /2

    (3)

in which η0 is the zero-shear-rate viscosity, ̇ the magnitude of tensor D, ̇=2trD21/2 . The shear-thinning or 
extensional-thickening effects were controlled by the shearing power-law index, ns,<1, and the extensional one, nex>1, 
and the parameter  λs and  λex were, respectively, time constants equal to the reciprocals of shear and extensional rate 
values, for which the power-law regions of Eq. (3) begin. When the flow classifier is greater than one, RR  > 1, i. e., the 
flow tends to become a rigid body motion, the viscosity function defined by Eq. (3) goes to zero, as required by this 
kind of motion (Souza Mendes et al., 1995).

For the function f(Rr) empĺoyed in Eq. (3), the function proposed by Ryssel and Brunn (1999) has been employed,
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f R r =
3sin4R r /2 

12sin4R r /2
    (4)

The definition for the function f(Rr) given by Eq. (4) aims to smooth the flow classifier distribution, weighting the 
geometric mean of shear and extensional viscosity functions defined by Eq. (3) – see Fig. 1, for the function  f(Rr) 
behavior in the interval 0 ≤ Rr ≤ 2. 

Figure 1. Function f(Rr) versus Rr.

Hence, the viscosity function for the flow-type sensitive fluids considered herein may be presented as an elevation 
plot on a plane spanned by the flow classifier, Rr, and the magnitude of the shear rate tensor, ̇  − as it illustrated in 
Fig. 2. This figure mainly illustrates the influence the flow classifier Rr on the viscosity behavior. First, for extension-
dominated flows, Eq. (3) prescribes viscosity increasing with the increase of strain rate. Second, for values of Rr very 
closed to pure shear flows, a viscosity decay may be observed. At last, for values comprised between 1 < Rr < 2, the 
more Rr increases, the more Eq. (3) prescribes a viscosity decay, as suggested by Astarita (1991). 

Figure 2. Viscosity elevation plot on the RR x ̇ plane.

3. FINITE ELEMENT MODELING

The fluid flows studied in this article have been defined in an open bounded domain  Ω ⊂ ℜN=2,3 with polygonal 
boundary Γ  such that,

=h∪h

g∩h=∅ ,g≠∅
    (5)

where  Γg is the portion of Γ on which the Dirichlet boundary conditions were imposed and  Γh the portion of Γ  where 
the Neumann boundary conditions were prescribed. 

log(2trD2)1/2

log(η/η0)

RR
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3.1 The (d-p-u) multi-field formulation

From  the  momentum  and  mass  balance  equations  for  a  continuous  body  (Gurtin,  1981)  coupled  with  the 
constitutive equation for the extra stress tensor  defined by Eq. (1), a multi-field boundary value problem, for steady-
state flows of purely viscous fluids, may be stated as: given the body force b :⊂RN R N , boundary conditions
ug :g⊂RN−1RN and th: h⊂RN−1RN  find the triple (d-p-u) such that 

 [∇u ]u−2 Rr , IID div d−2 [d] ∇  R r , II D ∇ p= b in 
d−D u=0 in 
div u=0 in 
u=u g on g

[−p12  Rr , II D D u]n=th on h

    (6)

where u is the fluid velocity, p the pressure, ρ the mass density, d and D(u) are alternative notations for the strain-
rate tensor – d is the variable srain-rate and D(u) is the function of the velocity u – 1 the unity tensor, n the outward 
unity vector,  th the stress vector given by the decomposition of the stress tensor T in spheric and deviatoric portions, 
T=τ − p1 (Gurtin, 1981) and the remaining variables defined as before.

3.2 A (d-p-u) multi-field stabilized formulation

Over the fluid domain  Ω ,  a finite element partition  Ωh consisting of convex  quadrilateral  elements in  ℜ2 was 
performed  in  the  usual  way  (Ciarlet,  1978),  In  order  to  approximate  extra-stress,  pressure  and  velocity  fields, 
respectively, the following finite-element spaces have been employed,

h={S∈C0 NxN∩L2NxN∣Sij=S ji , i , j=1, N ∣SK∈Rk K NxN , K∈h}
Ph={q∈C0∩L2

0∣qK∈Rl K , K∈h}
V h={v∈H0

1 N∣v K∈RmK N , K∈h}
V g

h={v∈H 1N∣v K∈Rm K N , K∈h , v=ug on g}

    (7)

where Rk, Rl and Rm denote the polynomial spaces of degrees k, l and m , respectively (Ciarlet, 1978).
Based on the finite element subspaces defined by Eq. (7),  a multi-field stabilized formulation for Eq. (6) may be 

written as: given the body force b and boundary condition ug, find the triple (dh, ph, uh)∈Σh x Ph x Vg
h such that:

B dh , ph, uh ;Sh , qh , vh=F Sh , qh , v h ∀Sh , qh ,v h ∈  h×Ph×V h    (8)

where

Bdh , ph ,uh ;Sh , qh , v h=∫
dh⋅Sh d−∫

Duh⋅Sh d∫
 [∇uh]uh⋅vh d ∫

2 R r , IIDd
h⋅D v hd 

−∫
2 [dh] ∇  R r , II D⋅vh d −∫

phdiv vh d∫
div uh qh d  ∫

div uhdiv v h d
∑

K∈h
∫ K

  [∇ uh]uh∇ ph−2 Rr , II Ddiv dh−2 [dh] ∇  R r , II D⋅

⋅  ReK  [∇ vh]uh−∇ qh−2 Rr , II Ddiv Sh−2[Sh]∇  Rr , IIDd 
 ∑

K∈h

2  ̇ ∫
dh−D uh⋅Sh−Dvhd 

  (9)

and

F Sh , qh , vh=∫
 b⋅vh d ∫ h

t⋅vh d 

∑
K∈h

∫K

 b⋅  Re K  [∇ vh ]uh−∇ qh−2 Rr , II Ddiv Sh−2 [d ]∇  Rr , IID d 
  (10)

with the stability  parameters  δ  and  α  (ReK)  associated to continuity  and motion equations,  respectively,  given  by  
(Franca and Frey, 1992),
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 =∣u∣p hK  ReK 

 Re K =
hK

2∣u∣p
 Re K with  ReK ={ReK , 0≤Re K1

1, Re K≥1 }
Re K=

 mK∣u∣p h K

4 Rr , II D
with mk=min {1 /3,2Ck} and C k ∑

K∈h

hK
2∥div Sh∥0, K

2 ≥∥Sh∥K
2 ∀Sh∈h

  (11)

and |u|p stands for the p-norm on ℜN, Ck a constant independent of mesh size, hK, derived from the inverse estimate  
(Franca and Frey, 1992) and the stability parameter β  from the material equation set equal to 0.25, according to Behr  
et al. (1983). 

Remark: The multi-field formulation defined by Eq. (8)-(11) is a Galerkin Least-squares-like formulation based on 
the the GLS formulation introduced in Behr et al. (1993).

3.3. Non-linear matrix problem

Discretization of Eq. (8) has been carried out by expanding the trial functions (d-p-u),  and their respective test 
functions (S-q-v), in terms of finite element shape functions. This leads to a set of discrete equations, which, in the 
residual form is written as:

R U=0   (12)

where  U is vector of degrees of freedom for  dh,  uh and  ph associated to the mesh nodal points. In two-dimensional 
planar cases, it assumes the form U=[d12,  d11,  d22,  u1,  u2,  p]T and the residual  R(U) is given by the following matrix 
expression,

R U=[EE u , R r , IIDH]d[N u N u , Rr , II DK u , Rr , II DHT−GT]u
[GG u , Rr , II D]p−[FF u , Rr , II D]

  (13)

where [H] is the matrix derived from the surface force term of motion, and [HT] the matrix from the stress-deformation 
relation term of material equation, [E] the matrix from extra-stress term of material equation, [N] the matrix from the 
inertia force term of motion equation, [K] the matrix from the diffusive term of material equation, [G] and [GT] the 
matrices from the pressure term of motion equation and incompressibility term of continuity equation, respectively, [F] 
the matrix from the body force term of motion equation. Matrices subjected to  α-subscript denote are derived from 
stabilized terms of motion equation, [δ] is the matrix from δ-stabilized-term of continuity.

To solve  the  residual  matrix  problem defined  by  Eq.  (12)-(13),  a  Newton-like  incremental  method  has  been 
employed. This algorithm may be summarized as follows.

J Uk Ak1=R Uk    (14)

with the residual R(U) defined by Eq. (13) and the Jacobian matrix J(Uk) given by

J Uk =
∂R Uk
∂U   (15)

From Eq. (14), the degree of freedom vector Uk may be update as

U k1=UkAk1   (16)

Remark: The convergence criterion adopted in the algorithm defined by Eq. (15)-(17) was the magnitude of the 
residual R(Uk) less than 10-7. As initial solution estimates, null extra-stress, pressure and velocity fields were adopted.

4. NUMERICAL RESULTS

In this section. the multi-field stabilized formulation defined by Eq.  (8)-(11)  was employed to approximate flow-
type sensitive quasi-Newtonian fluids. The considered flow geometry consisted of a four-to-one sudden contraction 
with a rounded corner of curvature radius equal to 3/4L – with L standing for width of the narrow part of the channel, as 
depicted  in  Fig.  3.  For  all  computations,  a  combination  of  bi-quadratic/bi-linear/bi-quadratic  finite  element 
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interpolations (Q2/Q1/Q2) has been used to approximate strain rate, pressure and velocity, respectively. After a mesh 
independence test, a finite element mesh consisting of 2,670 finite elements – which rendered 11,219 nodal points - has 
been chosen and employed in all numerical simulations.

2L0

L0/2
u0

x1

x2

Figure 3. Flow through a four-to-one sudden contraction with rounded corner: problem statement.

The characteristic strain rate, ̇c , was assumed to be the relationship between the outlet average velocity, u0, and 
the half width  L/2. Hence, the Deborah number may be defined by for flow-sensitive fluids may be expressed by 
(Ryssel and Brunn, 1999):

Dei=i ̇ c=
2i u0

L   (17)

where subscript i is related to extensional (i=ex) or shearing (i=s) viscosity functions given by Eq. (3). In the numerical 
simulations, all the investigated fluids had the same value of  λ either for pure shearing (λs) or pure extension (λex). 
Hence, both shearing and extensional Debora numbers have been fixed as Des=Deex=0.6, respectively, and the Reynolds 
numbers  has  been  set  equal  to  one  in  all  simulated  flows.  Three  different  flow-type  sensitive  fluids  have  been 
considered in the numerical simulations, namely (a) a shear-thinning fluid,with ns=0.1 and nex=1.0, (b) a shear-thinning 
and extension-thickening fluid, with  ns=0.5 and nex=1.5, and (c) an extension-thickening fluid, with ns=1.0 e nex=2.5.

(a)

(b)

Figure 4. Newtonian fluid flow: (a) flow classifier distribution Rr and (b) flow streamlines in the  contraction corner.

The Fig. 4a shows, for a Newtonian fluid, the distribution of the flow classifier  Rr along the channel. It may be 
noticed that the classifier Rr  had a unity value for the greater portion of the channel, i. e., the Newtonian flow may be 
classified as a shear-dominated one. However, in the contraction entrance , an extensional zone (Rr=0) may be observed 
due to channel straitening. Besides, some rigid body (Rr→2) zones may be still observed near the contraction corner, in 
which a small vortex – due to the low Reynolds value – has been captured as illustrated by the flow streamlines of Fig. 
4b. 

In Fig. 5, the dimensionless viscosity fields, η∗=η/η0, for the three investigated fluids, have been presented. For the 
shear-thinning fluid illustrated in Fig. 5a, it  may be verified a viscosity decay (η∗<1) near the wall  of the smaller 
channel – a region subjected to high shear rates. At contraction entrance, a region typically subjected to extensional 
flow, the viscosity did not decay even for high shear rates, due to the values of the flow classifier, Rr, got closer to zero. 
In  Fig.  5b,  for  the shear-thinning and extension-thickening fluid,  a  viscosity increasing (η∗>1) may be verified  at 
extensional region near the contraction entrance and a viscosity reduction (η∗<1) at shear zone near the wall channel. In 
Fig. 5c, for the extension-thickening fluid, the only viscosity increasing (η∗>1) has occurred in the region subjected to 
an extensional  kinematics,  i .e., the one near the contraction entrance. In all other regions of Fig. 5c, the viscosity 
distribution has remained constant.
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(a)

(b)

(c)

Figure 5. Viscosity function for (a) ns=0.1 and nex=1.0; (b) ns=0.5 and nex=1.5; (c) ns=1.0 and nex=2.5.

Figure 6 shows the dimensionless velocity profiles, u*=u1/u0, for four distances from the contraction plane: Fig. 6a 
presents fully-developed velocity profiles upstream of the contraction, Fig. 6b and 6c velocity profiles just upstream of 
the contraction − with the latter figure depicting a detail of the profiles near the symmetry line – and  Fig. 6d velocity 
profiles just after the entrance of the smallest channel, and Fig. 6e the fully developed velocity profile in the narrow 
channel.

(a) (b)

(c) (d)
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(e)

Figure 6. Velocity profiles: (a) −11L; (b) −0.5L; (c) −0.5L (zoom); (d) 0.375L, (e) 2.5L.

In Fig. 6a, all the studied fluids have presented similar velocity profiles, due to all the three flows were not disturbed 
yet by elliptical effects emanated from by the downstream contraction. Even this region being a shear-dominated one, 
the strain rates were not sufficient high that shear-shinning effects could significantly affect the fluid dynamics of low 
Deborah flows (De=0.6). In Fig. 6b, it may be noticed very similar velocity profiles, too. However, the detail near the 
symmetry line showed in Fig. 6c gave risen to some distinctness: (a) the shear-thinning fluid (ns=0.1 and  nex=1.0) 
showed a flatter profile, (b) the shear-thinning and extension-thickening fluid  (ns=0.5 and nex=1.5), a more elongated 
one, with the maximum velocity a little high than the Newtonian fluid, (c) the  extensional-thickening fluid  (ns=1.0 e 
nex=2.5), the highest maximum velocity at symmetry line. In the contraction region, the flow classifier Rr approached to 
null values at symmetry line characterizing, in this way, an extensional region. Hence, the viscosity increasing near the 
symmetry line  was  responsible  by the increasing of  the  maximum velocity,  while  viscosity reduction  became the 
velocity profiles flatters. Finally, In Fig. 6d may be found almost flat velocity profiles for the shear-thinning fluid. As it 
may be observed, just downstream the contraction, that the high shear rates experimented in smaller channel were 
already able to generate a shear-dominated region, phenomenon which is corroborated in Fig. 6e, farther from the 
contraction.

Fig. 7 shows dimensionless normal extra-stress profiles, τ11
*=(τ11L)/(η0u0) and τ22 =(τ22L)/(η0u0), along the symmetry 

line. For the extensional-thickening fluid (nex=2.5), it may be verified an increasing of normal extra-stresses due to the 
need to surpass the additional flow resistance imposed by the increasing of the extensional viscosity at the contraction 
entrance – a region subject to an extensional kinematics. For the shear-thinning fluid (ns=0.1), the normal extra-stresses 
were lower than those of the Newtonian fluid, in virtue of a lower extra-stress distribution induced by the shearing 
viscosity  reduction  near  the  contraction  –  a  decay  that  has  even  influenced  the  extra-stress  distribution  on  the 
extensional  region at  symmetry  line.  At  length,  for  the  shear-thinning  and extension-thickening  fluid  (ns=0.5  and 
nex=1.5), the low viscosities at shearing regions and high viscosities at extensional ones have prescribed an intermediate 
behavior between the pure extensional-thickening and pure shear-thinning fluids. Indeed, its extra-stresses were only a 
little lower than the Newtonian ones.

(a) (b)

Figure 7. (a) τ11
*and (b) τ22

* profiles through on the symmetry line of the flow.
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5. FINAL CONCLUSIONS

In this article, flow-type sensitive quasi-Newtonian fluid flows have been numerically investigated. The mechanical 
model employed the mass conservation and momentum balance equations coupled with a quasi-Newtonian viscosity 
function, dependent of the second invariant of the strain rate tensor and a kinematic flow classifier. According to the 
value of the flow classifier, the mechanical model could accommodate either shear-thinning or extension-thickening in 
mixed or pure type flow regions. Some two-dimensional  simulations of low Deborah flows have been carried out 
through  a  four-to-one  sudden  contraction  with  a  rounded  corner.  Four  distinct  fluids  have  been  investigated:  a 
Newtonian, a shear-thinning, an extensional thickening and a shear-thinning and extensional thickening fluid. For all 
fluid flows, the flow classifier distribution has indicated an extensional region in the contraction vicinity and pure shear 
flow far away the contraction. Besides, at contraction entrance, it was observed that the most extensional flows have 
generated more elongated velocity profiles, while the most shear-thinning fluids generated flatter ones. In addition, at 
region just  downstream of the contraction,  the shear-thinning were even flatter.  On the other  hand,  far  away and 
upstream of the contraction, all velocity profiles have been very similar, due to the low shear rates experimented on 
those regions. At last, for regions far away the contraction, null normal extra-stresses along the symmetry line have 
been obtained, indicating fully-development flow regions. For the contraction vicinity, the normal extra-stress have 
jumped near the symmetry line, with positive values for  τ11 and negative ones for  τ22.  For these regions, the more 
extensional-thickening the fluid, the higher the normal stress peaks, in virtue of these fluids experiment a viscosity 
increasing at extensional regions.
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