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Abstract. Many works have been published applying finite element method to estimate stresses generated by the 
application of various types of loading at long bones. Although this approach has many advantages, the relatioship 
between the main variables are not shown. Analytic models does establish an explicit relationship between loads and 
stresses, which is intrinsically advantageous as relates causes and effects. These analytic models are built in a increase 
level of complexity, in fuction of cross section improvements, to come close to a real cross section of a long bone. A 
comparative study between these analytic models are implemented to analyze the effect of increse of model complexity 
on its performance, using as reference a  finite element model.  
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1. INTRODUCTION  
  

Two analytic models of stress analysis of long bones, like a femur, shown in this work represent the conclusion of a 
research initiated by the authors at former works (Kenedi, 2009), (Kenedi, 2008), (Kenedi, 2007a) and (Kenedi, 2007b). 
In this work many expressions were recast in sake of simplicity and compact presentation. Two models of cross sections 
were utilized: a hollow circle and a hollow ellipse, both with constant thickness. The hollow circle model is easier to 
apply but describes roughly a real long bone cross section whereas the hollow ellipse model is more complex and 
laborious to apply but represent better a real long bone cross section.  The mathematical manipulations are kept at an 
introductory level as well as the application of the theory of mechanics of solids.  

As done at former works, several limiting hypotheses have to be made in order to assure the viability of these 
models. For instance, only cortical bone is utilized (the trabecular tissue is not included). Loading conditions are static. 
Restrains are positioned only at extremities of long bones, no side ligaments or muscles are recognized. The analysis is 
made at medial cross section, therefore far from long bone ends.  

A well establish commercial Element Finite software was used to generate reference results to compare with the 
analytic models results. 

   
 2.  ANALYTIC MODELS 
  

Two analytic models of stress analysis of cross section at medial long bone, are developed, one with hollow circle 
and other with hollow ellipse cross sections, both with constant thickness. The first takes advantage of evident 
symmetry, which simplifies the model expressions. The second maintain only two symmetries, which turn the model 
rather complex, but closer to a real long bone cross section. Although the models expressions have straightforward 
application, its calculations are rather tedious, requiring the utilization of mathematical software, like MathCad. 

 The description of the two models are done in the following sequence: first is shown the equivalent loading at a 
medial cross section of, for example, a femur’s head loading, secondly the expressions that relates loads and stresses are 
cast, and finally these stresses are rewritten in function of principal and maximum shear stresses by the utilization of 
Mohr Circle approach. The first step is pretty much the same for the two models, the second step is fully developed for 
each model and the last step are common for the two analytic models.  

 Although mechanics of solids was used only at an introductory level, the cross section geometry, especially for the 
hollow ellipse model, generates a relatively complex set of expressions. Also, the hollow ellipse model uses two axis 
systems, a local that accompanies the long axis of the cross section and a global one that always maintains its initial 
configuration.  

The separate estimation of axial, bending, transverse shear and torsional stresses is one goal of the utilization of 
analytic models, as is possible to estimate the most significant stress at a given point of external surface of a long bone 
cross section submitted to a given loading condition. This gain importance because enables attempts to relate loading to 
types of failure thought the estimation which stresses are important. Another goal of application of these analytic 
models is the generation of principal stresses and maximum shear stresses, which are key variables to failure criteria, 
even though until nowadays the research to establish a criterion of failure for long bones is still in course.  
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2.1 – Loading at cross section 
 

Figure 1 shows an example of human femur hypothetical cut at a generic medial section. At a distance d away from 
the centre of the generic medial cross section a static force P, represented by its components, loads femur's head.  

 
Figure 1. An example of a static load of a human femur’s head. 

 
 
The static force P is represented by its components in global coordinates system: 
 

* * *
x y zP i P j P k= + +P            (1) 

 
At the chosen cross section, the components of force are: 

*
xV Px =  

*
y yV P=             (2) 

*
zV P Nz = =  

 
The components of moments are:     

* *
x y z z

*
yM d P d P= −  

* * *
y z x x zM d P d P= −                           (3) 
* * *
z x y y xM d P d P T= − =  

where,   
 

x y zd i d j d k= + +d             (4) 
 
The variables presented in bold are vectors, the components of vectors that have an asterisk are referenced to global 

system of coordinates.  N is the axial force, V is the shear force, M is the bending moment and T is the torsional 
moment. ji , and k are unit vectors. 
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2.2 – Hollow circle model 
 

The first analytic model estimate the distribution of stresses at external surface of a medial hollow circle cross 
section of a long bone (Kenedi, 2007a) and (Kenedi, 2007b). Figure 2 shows the geometry and the main variables of 
this model. 

 

 
        (a)                         (b)                    (c) 
 
Figure 2.  (a) Geometric variables, (b) transverse shear variables and (c) bending variables of a hollow circle cross 

section of a long bone. 
 

Figure 2.a shows the cross sectional area Ac , the external radius rc and thickness t, fig.2.b shows the angle γ that 
defines the point of interest at external surface of a given cross section (where γ = 0° at positive x* axis), and are 

respectively the width of bone, at point of interest, perpendicular, respectively, to x

c
yt c

xt
* and y* axis. At fig. 2.c and  

are respectively, the perpendicular distances from axis x

cy cx
* and y* to external bone surface.  

The axial stress Nσ is (Crandall, 1978):  

N

c

N

A
σ =             (5) 

where, (24
c

c

t )A r t
π

= −              (6) 

 
The bending stresses components, Fx

σ  and Fy
σ are (Crandall, 1978): 

      
*

Fx

c
x
c
x

M y

I
σ =  and 

( )*

Fy

c
y

c
y

M

I

x
σ

−
=              (7)

cos( )c cx r γ=  and  sin( )c cy r γ=           (8) 

( ) ( )4 4

4
c c c c
x yI I r r t

π ⎛= = − −⎜
⎝

⎞
⎟
⎠

           (9) 

 
where, and *

xM  
*
yM are bending moments components and  and  are, respectively, the second moment of area 

about x

c
xI c

yI
* and y* axis. 

 
The torsional stress Tτ  is (Crandall, 1978):        

T

c

c

Tr

J
τ =             (10) 

      ( ) ( )4 4

2
c c

cJ r r t
π ⎛= − −⎜
⎝

⎞
⎟
⎠

           (11) 

 
where, Jc is the polar second moment of area. 
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The transverse shear stress components vx
τ  and vx

τ  are (Crandall, 1978): 

c
y

c
y

c
yx

v tI
QV

x
=τ and 

c
x

c
x

c
xy

v tI
QV

y
=τ           (12) 

where,                         

        ( )
2 2

2 1 2 1
c c

c c c
x xc c

y yt r r t k
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦
t

 and  ( )
2

2 1 2 1
c

c c c
y yc c

xt r r t k
r r

2cx
t

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦

   (13) 

 ( )
( ) sin( )

2

2 1 2 1

c cr r t
cc c c

x c c
cc r t

r
r r

yQ y dy r t y dy
y γ

−

−

−
−

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦∫ ∫

2c

xt

y k− ⎥        (14) 

       ( )
( ) cos( )

2 2

2 1 2 1

c cr r t
c cc c c

y c
c cr t

x
r

r t
Q x dx r t x dx

r
x γ

−

−

−
−

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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⎡ ⎤
⎢
⎢ ⎥⎣ ⎦∫ ∫ c y

x k− ⎥     

where, Vx and Vy are shear force components, xQ  and are, respectively, the first moment of area about xyQ * and y* axis. 

and are respectively the width of bone, at point of interest, perpendicular, respectively, to xc
yt c

xt * and y*  axis. Note that 

kx = 0 for )( tr ccy −≥ , kx = 1 otherwise, and ky = 0 for )( tr ccx −≥ ,   ky = 1 otherwise. 

 
2.3 – Hollow ellipse model  
 

The second analytic model estimates the distribution of stresses at external surface of a medial hollow ellipse cross 
section of a long bone (Kenedi, 2009) and (Kenedi, 2008). Figure 3 shows the geometry and the coordinate systems of 
this model. 

     
       

(a) (b)  
  

Figure 3. (a) Idealized hollow ellipse cross section of a long bone and (b) local and global coordinate systems. 
 

Figure 3.a shows a hollow ellipse cross section, with constant thickness t, with long axis 2a and short axis 2b, and 
cross sectional area A.  Fig. 3.b shows two coordinates systems: local and global. The local coordinates (x,y,z) are 
attached to cross section, where x and y axis are respectively, coincident with 2a and 2b axis. The z axis is obtained by 
the application of the right-hand rule. Each cross section has its own local axis configuration, always maintaining x axis 
coincident with 2a. Global coordinates (x*,y*,z*) has always the same orientation in space, where x*y* is a horizontal 
plane, x*z* and y*z* are vertical planes. φ is the angle between coordinate systems.  

 
The force components, written in local coordinates, are: 

 
( ) ( )ϕϕ sin*cos*

yPxPxV +=  

( ) ( )ϕϕ cossin **
yxy PPV +−=           (15) 

*
zPNzV ==       
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 Moments components, written in local coordinates, are: 
 

( ) ( )ϕϕ sincos **
yxx MMM +=     

( ) ( )ϕϕ cossin **
yxy MMM +−=          (16) 

TzMzM == *  
 
Note that (2) and (3) expressions are a particular case of (15) and (16) expressions when φ = 0º. 
  
The axial stress Nσ is (Crandall, 1978): 

N

N

A
σ =             (17) 

where,                        (18) ( )tbatA −+= π
 

Figure 4 shows the bending, torsional and transverse shear variables of a hollow ellipse cross section of a long bone.  

 
        (a)               (b)               (c) 
 

Figure 4. (a) Bending variables of a hollow ellipse cross section of a long bone, (b) torsional variables and (c) transverse 
shear variables of a hollow ellipse cross section of a long bone. 

. 

The bending stresses components, Fx
σ and Fy

σ , are (Crandall, 1978): 

      b
Fx

x

x

M y

I
σ =     and   

( )by

Fy
y

M x

I
σ

−
=          (19) 

      cos( )bx r γ=  and sin( )by r γ=           (20) 

      ( )3))((3
4

tbtaabxI −−−=
π  and ( )(3)(3

4
tbtabayI −−−=

π )      (21) 

       ( ) ( ) ( )2 22cos ( ) sin ( )ir a t b t 2γ γ= − + − γ  and  ( ) 2 2 2 2cos ( ) sin ( )or a bγ γ γ= +     (22) 
 
where, xb and yb are respectively, the perpendicular distances from axis y and x to external bone surface. Mx and My are 
bending moments components. xI  and yI  are second moment of area. ro is the external radius, the distance from the 
centre of cross section to the point of interest at external surface of bone, and  ri is the internal radius. 
 

The torsional stress Tτ  is (Crandall, 1978): 

     
2T

T
t

τ =
A

            (23) 

      A ( )( )2 2
tt

a bπ −= −           (24) 

where, T is the torsional moment and A is the area inside a line which passes in middle thickness of bone cross section.  
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The transverse shear stress components, vx

τ  and vx
τ , are (Crandall, 1978): 

     vx

x y

y y

V Q
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τ =  and vy

y x
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τ =           (25) 

where, 
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Note that kx =0 for  ( )by b t≥ − , kx = 1 otherwise, and ky = 0 for  ( )bx a t≥ − , ky = 1 otherwise. 
 
2.4 – Mohr Circle 
 

This subsection is common for the two analytic models and shows how transform the axial, bending, transverse 
shear and torsional stresses in principal and maximum shear stresses.  The resultant normal stress and the resultant shear 
stress can be estimated as shown at (28) and (29) expressions: 
 

Ny Fσ σ σ= +   and  vTxyτ τ τ= +           (28) 

where,  F F Fx y
σ σ σ= +  and v v vx y

τ τ τ= + .         (29) 

 
To transform normal and shear stresses (non principal stresses) in principal stresses, and also to estimate the 

maximum shear stress, the Mohr circle is utilized.  
 

  
 

(a) (b) 
 

Figure 5.  (a) Stresses at a point of external surface of a long bone and (b) Mohr circle.  
 

The angle θ represents the orientation of the element of area (at figure θ = 0°). At fig. 5.b a Mohr circle is 
represented for three conditions numbered from 1 to 3, at same external surface point: The first one correspond to the 
actual situation shown at fig.5.a. 
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The second condition turns θ at external surface of long bone from its initial position (2θ at mohr circle) to reach the 
angle of principal stresses. The third position, add 45° to second position (add 90° at Mohr circle) to reach the angle of 
maximum shear stresses. Note that at Mohr circle the angle θ is doubled (Crandall, 1978). 
 

The principal stresses and angles at surface of a long bone are:  
 

1 3

2
2,

2 2
y y

xy

σ σ
σ σ τ= ± +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , xy

y

2τ1 = arctan
2 σ

θ
⎛ ⎞
⎜
⎜ ⎟
⎝ ⎠

⎟        (30)

   
The maximum shear stress and angles at surface of a long bone are: 

 

max

2
2

2
y

xy

σ
τ τ= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

   ,                      (31) ' 45 ' 13orθ θ θ θ= + = + 5

 
 
3.  FINITE ELEMENT MODEL 

 
A finite element model was implemented, with the utilization of a well known commercial FEM package. The 

results of application of this model were used as reference to compare the performance of analytic models. The 
geometry was imported into ANSYS Design Modeler from a Parasolid file format. Figure 6.a shows a representation of 
the geometry of finite element model with global coordinates, fig 6.b shows the loading condition, 6.c shows the chosen 
cross section and 6.d shows mechanical proprerties of cortical human femur bone (Rapoff, 2007). 

 
 

  
 
      (a)        (b)       (c)     (d) 

 
Figure 6.  F.E. human femur model: (a) geometric model with global coordinates, (b) concentrated static loading at 
femur's head (red arrow), (c) view of the chosen cross section and (d) mechanical proprerties of a human femur. 
 

The F.E. model of a human femur is linear and elastic, with little displacements and rotations. The geometry is quite 
complex, but could be imported from a real scanned human femur geometry.    
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Figure 7.a shows the mesh of geometric model and fig.7.b shows the refinement of mesh at the region of interest. It 
was used 30742 Nodes and 13295 Elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
    
                          (a)     (b) 
 

Figure 7. (a) Mesh of finite element model of a human femur and  (b) mesh detail. 
 

Note at cross section of interrest, view fig. 7.b, the mesh is more refined to produce more reable results. Figure 8.a 
shows results of post-processing and shows a customary way of presentation of finite element results, in this case for 
maximum principal stress. Fig.8.b shows a alternative way of representing the same variable, but only accompanying a 
line of points positioned at exterior of chosen cross section. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
      
 

     (a)          (b) 
 

Figure 8.  Example of numerical results: (a) standard postprecesing result and  (b) path results. 
 

Note that at fig.8.a the customary way of representing results leads only to a rough estimative of developed stresses 
of a determined region. At fig, 8.b the utilization of a predetermined path, the estimative of stresses are made in a more 
efficient way, allowing to describe stresses in function of angle γ (generating a graphical representation).  Note that the 
finite element software increases the angle γ in clockwise pattern while the analytic models increase the same angle in 
an anticlockwise pattern. 
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4.  COMPARATIVE STUDY 
 
Figure 9.a shows the cross section of the hollow circle model, fig. 9.b shows the cross section of the hollow ellipse 

model and 9.c shows a cut at the chosen section of the human femur that was scanned from a real specimen. These three 
cross sections are approximately at same scale and the angle φ between coordinate systems is 8,98°. Note that at fig. 9.c 
the  point of view is from the cross section to the femur’s head. 

                 
(a)   (b)     (c)  

 
Figure 9. Cross sections: (a) hollow circle model, (b) hollow ellipse model and (c) real cross section of a human femur. 

 
Note that although the external surface at fig. 9.c is similar to the hollow ellipse model, the internal surface is more 
similar to hollow circle model. To compare the performance of the two analytic models, using the F.E. model as 
reference, a real loading data provided by (Bergmann, 2001) was used. The loading and geometric variables 

are: , , , , ,  and 

. For the hollow circle model and 

NPx 420* −= NPy 420* −= NPz 1625* −= md x 069,0= md y 0014,0−= md z 122,0=

98,8=ϕ 0, 015cr m= mt 0075,0= ; and for the hollow ellipse model , 
 and  .  Figure 10 shows a comparative diagram. 

ma 0175,0=

mb 015,0= mt 0075,0=
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Figure 10. Comparative diagram of results of two analytic and a FE models.  
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Figure 10 shows the results of stresses (σ1, σ3 and τxy_max) for points positioned at external surface of a determined 
cross section of a human femur for three models: one F.E. model, used as reference, and two analytic models, the 
hollow circle and the hollow ellipse models. It is apparent that the two analytic models generate results that are close to 
F.E. results. The hollow circle model has a simplest implementation but as shows fig. 9, only describes roughly the real 
cross of a long bone. This geometric ambiguity results in only a loose estimative of stresses. As the cross section of the 
hollow ellipse model approximates of real cross section geometry, as shown at fig.9, the estimation of stresses becomes 
more accurate, compensating the extra work required in its implementation.   
 
5.  CONCLUSIONS 

 
Two simple analytic models were developed, with limiting hypothesis, to describe the distribution of principal and 

maximum shear stresses and its respective angles, at external surface of a human long bone, submitted to a static 
loading.  The performance of analytic model was improved, with the utilization of an hollow elliptical shape to model a 
cross section of a medial long bone, in comparison with early analytic models with hollow circular shape.  The results 
of aplication of hollow elipse model showed good agrement with F.E. results, used as reference. The estimative of 
principal and maximum shear stresses at external surface of long bones, without the necessity of the utilization of a 
Finite Element software, is the major goal of this work.. This stresses results can be also used as input variables to a 
failure criterion for long bones.  
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