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Abstract. The main purpose of this study is to obtain a stop criterion to assess the applicability of an algorithm based  
on artificial neural networks (ANNs), in the analysis of the fatigue behavior of composite materials. Accordingly,  
ANN training was performed with the fatigue behavior data of various materials obtained from the literature. These  
results show the viability of the algorithm even when using a small number of S-N curves. This viability is confirmed 
by means of the correlation coefficient and the mean squared error when the  ANN and experimental results are 
compared. Two composite materials for network training obtained from the literature were used for this analysis.  
One of these is for validating the results and the other to establish the stop criterion; in addition, these results were 
compared with those of previous studies.
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1. INTRODUCTION

Composite materials are composed of two or more materials, in which the compatibility between their phases is 
taken into consideration; that is, matrix and reinforcement.  The study of these materials is extremely important for 
diverse application fields,  which range from recreational  equipment to military applications. These vast application 
possibilities are mainly due to the various characteristics that can be obtained from these materials, among which are 
their low weight, good mechanical resistance and resistance to corrosion (Freire Jr, 2005; Levy, 2006).

Metallic  materials  have  well-defined,  repeated  and  predictable  properties,  demonstrated  in  the  classic 
manufacturing  processes  technologically  consolidated  over  the  course  of  several  decades.  On the  other  hand,  the 
properties of composites are significantly influenced by a large number of parameters. If on one hand this fact makes 
the mathematical modeling of the mechanical behavior of composites difficult and troublesome, on the other it may 
enable  the  freedom  to  manufacture  composite  materials,  endowing  them  with  properties  that  meet  the  specific 
requirements of a project. Thus, composites can be effectively designed simultaneously to the structural component that 
is needed for a given application, providing them with unique properties to meet the specific requirements of the project 
(Levy, 2006).

During the design of structures and equipment submitted to cyclical loads in which composites are used as raw 
material, a large number of fatigue tests are needed to obtain a certain degree of material reliability. However, these 
tests are inconvenient because they are time consuming. High-cycle fatigue tests have more than 103 cycles and added 
to this factor is the need for labor, given that a technician is required to monitor the entire process, thus increasing costs 
(Freire Jr, 2005; Sutherland, 1999).

The ideal  solution would be to  obtain,  with reasonable  reliability,  the fatigue response  of  the material  with a 
minimum number of tests. This would enable the designer to make preliminary predictions of the likely fatigue life of 
the material before spending time and money on a more thorough analysis with a large number of tests (Freire Jr, 2005).

Thus, several mathematical models in the specialized literature are used to predict the life of composite materials by 
means  of  failure  diagrams that  analyze  the overall  fatigue  behavior  of  the material.  Included in  these  models  are 
empirical and semi-empirical models and more recently, artificial neural networks (ANNs) have been introduced for 
this same purpose. However, in the case of ANNs, studies are still in the embryonic phase and much more research is 
required (Freire Jr 2005, Mandell et al., 1997; Bond, 1999; Beheshty et al., 1999). 

2. MATERIALS OBTAINED FROM THE LITERATURE

In this paper three composite materials from previously published studies were used (Freire Jr, 2005; Freire Jr, 
2009) along with those from two new investigations, one of which was used for analysis and validation of the network 
architecture. These results established a stop criterion to be used in two other datasets to prove the applicability of the 
practice. 

The material used to validate the stop criterion is denominated MAT(0)2 (DOE/MSU, 2003). It consists of a two-
layer glass fiber plastic tested along the main fiber direction and manufactured as D155 fabric (gramature = 527 g/m2) 
and the matrix is polyester-based, in which Coresina 63-AX-051 by the hand lay-up process was used, with a 48% 
volume of  glass  fiber.  The material  used  to  confirm  the  stop criterion  is  defined  by the acronym GRP (glass fiber 
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reinforced polyester). It is a glass-fiber plastic reinforced with polyester resin and this material was fatigue tested in the 
loading direction at 0º and 45º to the configuration of its fibers. The  material has six unidirectional glass fiber layers 
where fiber density is 700 g/m2 in the 0º layer, 450 g/m2 in the +45º layer and 225 g/m2 in the -45º layer, with a 
configuration of [0/(±45)2/0]T (Philippidis, 2001; Philippidis, 1999). 

3. DATA PRE-PROCESSING

To obtain the S-N curves of the materials studied here, generalization of the power law presented in equation 1 was 
applied. 

log  a=A−B⋅[log N ]
P                                                                                                                         (1)

In the above equation, A, B and P are constants that must be determined, N is the number of cycles to rupture the 
material and σa is the stress amplitude to which the material is subjected. The values of constant A, B and P for each 
fatigue ratio given by equation 1 are shown in tables 1, 2 and 3, where σultT the value of the last tensile stress (tensile 
strength limit) and σultC is  the value of the last  compression stress (compression strength limit).  The values of the 
constants shown in tables 1 and 2 refer to the GRP materials in the 0º and 45º configurations and to the MAT(0)2.

Table 1: Data obtained for the S-N curves and fatigue ratios of the GRP 0 º material. 

Stress Ratio (R) A B P Correlation Coefficient (r)

10 2 0.0061413 1.88 0.93

-1 2.33 0.07 1 0.99

0.1 2.04 0.000401 3.5 0.93

0.5 1.79 0.000165 3.5 0.87

σultC -216.68 (MPa) σultT 244.84 (MPa)

Table 2: Data obtained for the S-N curves and fatigue ratios of the GRP 45º material. 

Stress Ratio (R) A B P Correlation Coefficient (r)

10 2.14 0.15 0.73 0.99

-1 2.03 0.06 0.91 0.96

0.1 1.79 0.04 1.35 0.97

0.5 1.54 0.03 1.39 0.98

σultC -112.7 (MPa) σultT 139.12 (MPa)

Table 3: Data obtained for the S-N curves and fatigue ratios of the MAT(0)2 material.

Stress Ratio (R) A B P Correlation Coefficient (r)

2 2.18 0.01 1.21 0.73

10 2.42 0.05 0.93 0.9

-1 2.77 0.06 1.06 0.98

-0.5 2.95 0.11 1 0.99

0.1 2.81 0.09 1.02 0.96

0.5 2.55 0.11 0.72 0.94

σultC -599.41 (MPa) σultT 1423.69 (MPa)

The values obtained for the correlation coefficient show that the equation used fit the experimental data well; this 
did not occur only for R = 2 of the MAT(0)2 because data dispersion is very high.
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4. MATEMATICAL MODEL

To create the mathematical model, the multilayer perceptron network trained by the backpropagation algorithm was 
used. This model contains architecture consisting of two input neurons (mean stress and number of cycles and an output 
neuron (stress amplitude), in order to have a function that satisfied the condition shown in equation 2. 

a= f med , N                                                                                                                                                (2)

Where  σa is the stress amplitude applied (maximum stress minus minimum stress divided by two),  σmed is mean 

stress (maximum stress plus minimum stress divided by two) and N is the number of cycles at which material rupture 
occurred (Freire Jr, 2005).

For the material used to validate the stop criterion, a hidden layer was used with 2 to 30 neurons, all with bias and 
sigmoid  activation  function in  the  hidden  neurons  and  linear  function  in  the output  neuron.  The  retropropagation 
algorithm based on the rule of the moment (Freire Jr, 2005; Haykin, 2001) was used in training. Network training was 
carried out based on the data obtained by the S-N curve using equation 1 (Freire Jr, 2005).

The diagram below shows the training mode of the ANN (a) and the model obtained (b), where TRE represents the 
number of curves (S-N curves obtained from equation 1) used for training the  ANN,  TOD and the total number of 
functions used,  e is  the error  between the desired response and the current  ANN response and  w is the matrix of 
synaptic weights of the ANN (Freire Jr, 2005).
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Figure 1. (a) ANN training method. (b) Model obtained by ANN training.

During training we observed RMS (Eq. (3)) behavior of the total data set in order to verify ANN generalization

RMS=
1

2⋅Q
⋅∑

1

Q

∑
i=1

m

d i−zi
2                                                                                                                          (3)

In the above equation RMS is the root mean square, Q represents the size of the data set, m the number of output 
neurons  (for  this  study  m =  1),  di and  zi are  the  desired  responses  and  the  current  response  of  the  output  knot, 
respectively.

The values chosen for the constant of the moment and the learning rate were between 0.7 and 1.0. In the choice of 
training data, the fatigue ratios shown in table 4 were considered. The choice of this training set aimed at better data 
distribution within the loading regions.
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Table 4: Dataset used in network training.

Dataset MATERIAL (0)2

GRP

0° 45°

3R R= 10, -0.5, 0.1 R= 10, -1, 0.1 R= 10, -1, 0.1

4R R= 10, -0.5, -1, 0.1 ______________ _____________

All R= 10, 2, -0.5, -1, 0.1, 0.5 R= 10, -1, 0.1, 0.5 R= 10, -1, 0.1, 0.5

Data normalization was performed in both the input and output neurons. For the mean stress case, normalization 
was done considering its signal according to figure 2. This modification in normalization was done to achieve better 
data distribution, thus facilitating ANN learning (Haykin, 2001).

As previously mentioned, the behavior of a composite material submitted to fatigue was determined and the results 
were used to prove the stop criterion in conjunction with other materials from the literature (Freire Jr, 2005; DOE/MSU, 
2003; Philipidis, 2001), where a stop criterion was established. After definition of the stop criterion, its viability in the 
GRP 0º and  GRP 45º data set was determined, in which network architectures that varied from 10 to 11 neurons in 
each hidden layer were used. It is worth pointing out that all  the neurons used here have bias and sigmoid activation 
function in the hidden neurons and linear function in the output neuron. Range analysis of the number of cycles in this 
study was between 102 and 107 cycles, since the experimental data analyzed are in this region. MATLAB software was 
used to implement all the algorithms used in this study.
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Figure 2. Diagram demonstrating the ANN simulation model (Freire Jr, 2005). 

5. RESULTS

5.1 Analysis of MAT (0)2 and definition of the stop criterion 

The cross-validation technique was used to analyze the results. This technique analyzed the  RMS (mean error 
squared) of the training set (RMSTRE) and of the total dataset (RMSTOD), so that at the end of training the network 
synaptic weights at the lowest (RMSTOD) value were chosen.

The reason for choosing the total dataset as opposed to the validation set is related to the need of obtaining an ANN 
that modeled fatigue behavior for all the data analyzed and not only for the training or validation set. Figure 3 shows an 
example of RMSTOD and RMSTRE behavior as a function of the number of training epochs analyzed for the MAT(0)2.

Analysis of the results obtained during cross-validation training showed that for the training set, the RMSTOD and 

RMSTRE curves exhibit the following behavior: 1) the RMSTOD and RMSTRE curves accompany each other with similar 

values or in the same order of magnitude (figure 3 (a) or 2) the RMSTOD and RMSTRE curves accompany each other in 

the same order of magnitude with separation of the curves occurring before 1500 training epochs, where the tendency of 
RMSTOD is to stabilize at a value above that of RMSTRE as can be observed in figure 3 (b). It is worth pointing out that 
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this behavior was confirmed for the two training sets used in the MAT (0)2 material.

It is interesting to note that the behavior shown in figure 3 (a) was only confirmed for this (MAT (0)2) material. In 

previous studies this was not observed for a dataset with such a small number of composite materials (Freire Jr, 2005; 
Freire Jr, 2009).

Learning capacity depends on the representativity of the examples available and the complexity of the network 
architecture. It is known that excessive training can lead to an unsatisfactory result, since the lack of a sufficiently large 
dataset to validate the network is common. Very long training may lead the network to mask the results and it can even 
be said that the network “memorizes” these results. Other studies (Freire Jr, 2005; Freire Jr, 2007) showed that the ideal 
solution would be to limit the number of training epochs and the value of RMSTRE.
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Figure 3. RMS curves obtained during training of an ANN with 15 hidden neurons (a) and 13 hidden neurons (b), with 
a 4R training set for the MAT (0)2 (R = 10, -0.5, -1, 0.1). 

The possibility of a strategy that could avoid excessive training (overfitting) was observed. From these results it can 
be concluded that the RMSTOD must not exceed 0.0005 using only three S-N (R) curves and 0.0004 for four S-N (4R) 
curves, using the previously mentioned criterion.

Table 5 shows the  RMS  values for the best results obtained for each training set of the materials analyzed; the 
results of materials DD16, C10 and C12 were taken from other studies (Freire Jr, 2005; DOE/MSU, 2003; Freire Jr, 
2007).

Table 5 shows that the use of the number of training epochs as a stop criterion would not be satisfactory, given that 
it varies substantially, as can be seen in the MAT (0)2, which only obtains the best result for 4925 training epochs, 

whereas for other materials, values under 500 training epochs are obtained.

Table 5: Best results obtained for each training set (the ANNs used between 2 and 30 hidden neurons and up to 5000 
epochs were trained).

Composite 
Material Data Set RMSTRE RMSTOD Hidden Neurons Training Epochs

MAT(0)2 3R 0.000092 0.00036 28 4069

MAT(0)2 4R 0.000088 0.00026 15 4925

DD16 3R 0.00062 0.00050 8 349

DD16 4R 0.00048 0.00041 23 493

C10 3R 0.00049 0.00048 23 287

C10 4R 0.00031 0.00030 9 1721

C12 3R 0.00037 0.00040 27 289

C12 4R 0.00027 0.00029 20 3577

Figures 4 and 5 show Goodman diagrams for the MAT(0)2 trained with a 3R and 4R training set, considering the 

best results obtained.

(a) (b)
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Figure 4. Goodman diagram obtained from the neural network with 28 hidden neurons trained with a MAT(0)2 -3R (R = 

10, -0.5, -1 and 0.1) training set with 4069 training epochs.
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Figure 5. Goodman diagram obtained from the neural network with 15 hidden neurons trained with a MAT(0)2 -3R (R = 

10, -0.5, -1 and 0.1) training set with 4925 training epochs.

Analysis of figures 4 and 5 for the MAT (0)2 shows that the greatest variations in results occur for R = 0.5 and R = 

2; thus figures 6 and 7 were built for a qualitative assessment of these results. These figures depict the  S-N  curves 
obtained by the ANN and by equation (1) as well as the experimental data. 
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Figure 6. S-N curve of the MAT (0)2 for R = 0.5 and R = 2, comparing the experimental data obtained from the 
literature, the data obtained by the ANN and the data obtained by the power law, trained with 3R.
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Figure 7. S-N curve of the MAT(0)2 for R = 0.5 and R = 2, comparing the experimental data obtained from the 
literature, the data obtained by the ANN and the data obtained by the power law, trained with 4R.

5.2 Validation of the stop criterion 

With the stop criterion established (0.0005 for 3R and 0.0004 for 4R), its applicability was determined in two other 
datasets (GRP 0º and GRP 45º), in which the number of hidden neurons was 10 and 11, to verify qualitatively the best  
architecture for the network. 

Table 6 shows the results obtained for these cases. It should be pointed out that such materials cannot be used in 
validation owing to their small number of S-N curves. 

Goodman diagrams for the GRP 0º and GRP 45º materials (figures 8 and 9) were built from the neural networks 
trained with the 3R training set.

Analysis of figures 8 and 9 shows that the network managed to satisfactorily model material behavior. From this we 
can observe the benefit of using neural networks in the fatigue behavior of composite materials with a stop criterion, 
since good artificial neural network results are obtained using only 3 S-N curves.
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Table 6: Results obtained for each training set of 10 and 11 hidden neurons trained up to 1500 epochs, using an 
RMSTOD stop criterion of 0.0005.

Composite 
Material

Data Set RMSTRE RMSTOD Hidden Neurons Training Epochs

GRP 0° 3R 0.00054 0.00049 10 885

GRP 0° 3R 0.00050 0.00049 11 642

GRP 45° 3R 0.00050 0.00049 10 1182

GRP 45° 3R 0.00048 0.00050 11 1284

-300 -200 -100 0 100 200 300
0

20

40

60

80

100

120

140

160  102

 103

 104

 105

 106

 107

R= 0.5

R= 0.1

R= -1

R= 10

A
lte

rn
at

in
g 

S
tr

es
s 

(M
P

a)

Mean Stress (MPa)
 

 

Figure 8. Goodman diagram obtained from the neural network with 10 hidden neurons trained with a GRP 0º - 3R (R = 
10, -1 and 0.1) training set with 885 training epochs.
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Figure 9. Goodman diagram obtained from the neural network with 10 hidden neurons trained with a GRP 45º - 3R (R 
= 10, -1 and 0.1) training set with 1182 training epochs.
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7. CONCLUSIONS

It was found that a classic multiple-layer perceptron  ANN  was sufficient  to model the fatigue behavior of the 
MAT(0)2 using only 3 S-N curves. 

These results and those of previous studies (Freire Jr, 2005 (b)) showed that a good stop criterion using 3  S-N 
curves for the ANN architecture presented here involves the use of a minimum mean squared error (RMS) of 0.0005 for 
3 S-N (3R) curves and of 0.0004 for 4 S-N (4R) curves.

Based on this stop criterion a fatigue modeling of the GRP material was performed, tested at 0º and 45º, producing 
satisfactory results. 
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