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Abstract. This work deals with the hierarchical Generalized Finite Element Method (GFEM) applied to free vibration 
of beams. The variational problem of free vibration is formulated and the main aspects of GFEM are discussed. The 
Assumed Mode Method (AMM), the Composite Element Method (CEM) and the GFEM are presented. The AMM and 
the CEM are developed by enrichment of the conventional FEM local solution space with non-polynomial functions 
obtained from closed form solutions of the Classical Theory of free vibration. These approaches result in hierarchical 
refinements. The GFEM is developed by enrichment of the conventional FEM solution space with knowledge about the 
differential equation being solved applying the Partition of Unity Method (PUM). The application of GFEM in 
vibration analysis of beams is investigated. The eigenvalues obtained by GFEM are compared with those obtained by 
analytical solution, by CEM and by h and p-versions of FEM. The numerical results show that GFEM proposed  in this 
work has higher rates of convergence than the h-version of FEM and the CEM. 
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1. INTRODUCTION  
  

Nowadays the vibration aspects of mechanical systems have significant importance in design processes, especially 
in automotive and aeronautical fields. The study of the dynamical behavior of structures is important to obtain an 
optimum design of them and to avoid vibration problems such as material fatigue, noise and human discomfort. In last 
years many researchers have developed vibration analysis methods. 

The Finite Element Method (FEM) is commonly used in vibration analysis and its approximated solution can be 
improved using two refinement techniques: h and p-versions. The h-version consists of the refinement of element mesh, 
on the other side, the p-version may be understood as the increase in the number of form functions in the element 
domain without any change in the mesh (Ribeiro, 2001; Campion and Jarvis, 1996). The conventional p-version of 
FEM consists of increasing the polynomial degree in the solution. 

Some enriched methods based on the FEM have been developed in last years. In the Spline Finite Element Method 
(SFEM), proposed by Leung and Au (1990), the displacement field to vibration analysis of beams and plates is 
described by B3-spline form functions. The B3-spline functions are computationally efficient and flexible to model 
different boundary conditions. Engels (1992) and, Ganesan and Engels (1992) presented the Assumed Mode Method 
(AMM) which is obtained adding to the FEM form functions set some interface restrained assumed modes. The 
Composite Element Method (CEM) (Zeng, 1998a,b,c) is obtained by enrichment of the conventional FEM local 
solution space with non-polynomial functions obtained from analytical solutions of simple vibration problems. This 
approach results in a hierarchical refinement called c-version. A modified CEM applied to analysis of beams was 
proposed by Lu and Law (2007). The use of products between polynomials and Fourier series instead of polynomials 
alone in the element shape functions is recommended by Leung and Chan (1998). They developed the Fourier p-
element applied to the vibration analysis of bars, beams and plates.  

The Generalized Finite Element Method (GFEM) was developed based on the ideas of the Partition of Unity 
Method (PUM) (Melenk and Babuska, 1996 and Babuska, Banerjee and Osborn, 2004). In the GFEM, the local solution 
spaces are formed for functions, not necessarily polynomial, that permits inclusion of a priori knowledge about 
fundamental solution of the governing differential equation. This procedure ensures good local approximation. The 
local spaces are grouped in the approximated solution space by the Partition of Unity Method that ensures good global 
approximation. Arndt, Machado and Scremin (2007) proposed a generalized finite element for vibration analysis of 
straight bars based on the enrichment function of CEM.  

This work presents a first application of the GFEM in free vibration analysis of beams. The results are compared 
with the results obtained by h and p refinements of FEM and by CEM. 
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2. VARIATIONAL FORM OF THE FREE VIBRATION OF EULER-BERNOULLI BEAMS 
  

The Euler-Bernoulli beam consists of a straight beam with lateral displacement (Fig. 1). The basic hypotheses are 
(Craig, 1981): (a) The x axis (neutral axis) of the beam undergoes no extension or contraction; (b) Cross sections 
perpendicular to the neutral axis in the undeformed beam remain perpendicular to the deformed neutral axis, that is, 
transverse shear deformation is neglected; (c) The material is linearly elastic and the beam is homogeneous at any cross 
section; (c) Normal stresses σy and σz are negligible compared to the axial stress σx ; and (d) The xy-plane is a principal 
plane. 

 

 
 

Figure 1. Straight beam with lateral displacement 
 
 
The vibration of the beam is a time dependent problem. The PDE (Partial Differential Equation) that governs this 

problem may be written as: find the transversal displacement ),( txuu =  which satisfies 
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where I is the second moment of area, A is the cross section area, E is the Young modulus, ρ is the specific mass,  p is 
the externally applied transversal force per unit length and t is the time. The solution ),( txuu =  must satisfy 
boundary and initial conditions defined in the problem. 

According to Carey and Oden (1984), the most popular way to obtain the variational form of a time dependent 
problem is consider the time t like a real parameter and develop a family of variational problems in t. This consists in 
selecting test functions )(xvv = , independent of t, and applying the weighted-residual method. If the finite element 
method is used to represent the spatial behavior of the solution, one obtains a system of ordinary differential equations 
of the degrees of freedom as functions of the parameter t. This approach is called semi discrete formulation of the 
problem. 

Using the weighted-residual method, according to Carey and Oden (1984), to develop an integral statement of 
Eq.(1),  the  solution ),( txuu =  must satisfy 
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for admissible test functions )(xvv =  at any time ]( Tt ,0∈ . 

Integrating Eq. (2) by parts twice, one obtains: 
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It is necessary to introduce the boundary and initial conditions to complete the problem. The admissible test 

functions )(xvv =  must satisfy the same boundary conditions of the solution ),( txu . For classical boundary 
conditions in boundaries 0=x  and Lx = , the two first terms in Eq. (3) vanishes. According to Carey and Oden 

(1984), in vibration problems, one assumes periodic solutions )(),( xuetxu tiω= , where ω  is the vibration 
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frequency. Thus, particularizing the problem to the case of free vibration of a straight Euler-Bernoulli beam where E 
and ρ are constants and 0),( =txp , it becomes an eigenvalue problem with variational statement: find a pair ( )u,λ , 

with ),0(2 LHu∈  and R∈λ ,  so that 
 

0
0

2

2

0
2

2

=−
∂
∂

∂
∂

∫∫ vdxAudx
x
v

x
uIE

LL

ρλ  (4) 

 
for admissible test functions ),0(2 LHv∈ , where 2ωλ = . The variational statement in Eq.(4) can also be written as:  
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where ),( vuB  and ),( vuF  are bilinear forms, obtained from: 
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In numerical methods, approximated finite dimensional subspaces ),0(2 LHH h ⊂  are chosen and the variational 

statement becomes: find R∈hλ  and ),0( LHu h
h ∈  so that 
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The approximated solution )(xuh  can be written, for a discrete system with N degrees of freedom, in the following 

form: 
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where jφ  are the global base functions of the approximated subspace hH and ju  are the degrees of freedom. It will be 
shown that different approximated subspaces are proposed for the FEM, the AMM, the CEM and the GFEM. In 
general, according to Reddy (1986), the form functions are developed to master elements and then they are mapped to 
the real elements obtained from the mesh. In this work the master element domain is eΩ (0,1). 
   
3. FINITE ELEMENT METHOD 
  

The conventional FEM uses polynomials form functions and the approximated solution can be improved using two 
refinement techniques: h and p-versions. The h-version consists of the refinement of the mesh, that is, to improve the 
total number of elements without changing the element family. The conventional p-version of FEM consists of 
increasing the polynomial degree in the solution without change in the mesh. 
 
3.1. h refinement 
  

Taking the two node uniform beam element (Fig. 2) with two degrees of freedom per each node, the approximated 
solution in the element domain can be defined as:  

 
( ) ( ) ( ) ( ) ( ) 24231211 θξψξψθξψξψξ eeeee
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or in matrix form: 
 

 ( ) qNTe
hu =ξ  (11) 

 

where 
eL

x
=ξ , [ ]eeeeT

4321 ψψψψ=N , [ ]2211 θθ uuT =q , eL  is the element length, u1 and u2 are 

the nodal displacements and, θ1 and θ2  are the nodal rotations. 
 

 
 

Figure 2. Beam element 
 

Using Hermitian polynomials as local form functions, one obtains: 
 

( ) ( )[ ]23323232 232231 ξξξξξξξξξ −−+−+−= ee
T LLN  (12) 

 
The conventional h-version of FEM consists in increasing the number of elements in the model to improve the 

approximated solution. 
 
3.2. p hierarchical refinement 
  

According to Ribeiro (2001), Zienkiewicz et al. (1982) and, Carey and Oden (1984), in a p refinement, if a form 
functions family is of order p and it constitutes a subset of other family with order p+1, then this refinement is called 
“hierarchical”. The hierarchical form functions were introduced by Zienkiewicz, Irons, Scott and Campbell in 1971, 
according to the work of Zienkiewicz et al. (1982). 

The application of hierarchical methods in the solution of structural vibration problems allows that stiffness and 
mass matrices previously calculated can be maintained and just the matrices coefficients related to the new form 
function must be calculated. This feature reduces the computational effort necessary to build the matrices in each step of 
the refinement. 

It is important to stand out that the new degrees of freedom introduced by the adding of new form functions in a 
hierarchical refinement do not corresponds to the physical quantities generally related to the elementary degrees of 
freedom. Just the degrees of freedom that define the mesh stay related to the physical quantities of interest, which can 
correspond, for instance, to the nodal displacements and rotations.  

The hierarchical p refinement of FEM can be obtained adding a new node between the original element nodes of the 
two node beam element (Fig. 2). The local form functions in Eq. (12) are maintained and just the new local form 
functions of superior order related to the new node are added. By this approach the new form functions in a three node 
element obtained from two node element are: 

  
234

5 163216 ξξξψ +−=e  (13) 
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Two new degrees of freedom u3 and θ3 appear and they do not correspond to the nodal displacement or rotation. 

Adding new nodes in the element domain and taking the previous form functions, one obtains new local bases 
hierarchically superiors. 
 
4. THE ASSUMED MODE METHOD (AMM) AND THE COMPOSITE ELEMENT METHOD (CEM) 
 

Other methods can be obtained using the FEM conventional element with local form functions enriched by adding 
non-polynomial functions related to the closed form solutions from classical theory. Weaver Junior and Loh (1985) 
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used analytical solution as form functions to lateral displacements in the analysis of local vibration mode shapes of 
trusses. 

The Assumed Mode Method (AMM) is based on the idea presented by Craig (1981) that the displacement field can 
be written as a linear combination of functions representing assumed vibration modes. The AMM for free vibration 
analysis of bars, beams and frames proposed by Engels (1992) and, Ganesan and Engels (1992) describe the 
displacement field of an element by: 

 
( ) )()( ξξξ AMI

e
h uuu +=  (15) 

 
where uI and uAM are interface and assumed mode displacement fields, respectively. The interface corresponds to the 
element nodes in structures formed by one dimensional components. The assumed modes must be linearly independent, 
sufficiently differentiable and at least satisfy the geometric boundary conditions of the element.  
The first part of Eq. (15) is a quasistatic displacement due to the displacement of the interface. For beam elements, the 
interface displacement field is the conventional cubic FEM approximated displacement field (Eqs. 10-12). The second 
part of Eq. (17) represents the remainder of the total displacement measured by an absolute observer. The assumed 
mode displacement vanishes at the element interface and can be expressed as a linear combination of interface 
restrained assumed modes. There are several sets of assumed modes that can be used. In fact, the assumed modes can be 
any functions that vanish at the element interface. For example, the restrained normal vibration modes are assumed 
modes that are obtained by analytical solution of the free vibration problem of the element with all nodal displacements 
restrained.  

The AMM approximated solution proposed by Engels (1992), in the element domain of a beam, is obtained by: 
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where [ ]2211 θθ uuT =q  is the same of Eq. (11), the vector N contains the FEM form functions obtained in 
Eq. (12) and the vectors Ø  and q  are obtained by: 
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where ci are the coefficients that multiply the mass normalized restrained normal vibration modes Fr , and rλ  are the 
eigenvalues associated to the solution of a clamped-clamped beam obtained by the following characteristic equation 
 

( ) ( ) 01coshcos =−rr λλ  (20) 
 

In order to avoid the round-off errors associated with the hyperbolic functions when the argument becomes large, 
Ganesan and Engels (1992) used the restrained normal vibration modes in the alternative form proposed by Gartner and 
Olgac (1982). In this sense, the assumed mode form functions can be written in the following form: 
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Zeng (1998a,b,c) developed elements of trusses, Euler-Bernoulli beams and frames using a similar approach to free 

vibration analysis. In the work of Zeng (1998a,b,c) this technique was called Composite Element Method (CEM).  
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The beam element of CEM differs to AMM just by using the enrichment form functions of Eq. (19) in the non 
normalized form 
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The new degrees of freedom related to the enriched form functions do not have direct physical meaning and they 

were called “c degrees of freedom” by Zeng (1998a,b,c) in the Composite Element Method (CEM). The enrichment 
proposed by AMM and CEM are similar and produces hierarchical models and better results than those obtained from 
h-version of FEM (Arndt, Machado and Hecke, 2002 and 2003). The hierarchical refinement produced when the 
number of analytical functions in the approximated solution is increased was called “c refinement” by Zeng (1998a,b,c). 
 
5. THE GENERALIZED FINITE ELEMENT METHOD (GFEM) 
 

The Generalized Finite Element Method (GFEM) is a Galerkin method which main goal is the construction of an 
approximation using local knowledge of the differential equation to be solved, that ensures good local and global 
results. The GFEM was initially named Partition of Unity Finite Element Method (PUFEM) by Melenk and Babuska 
(1996). The local enrichment in the approximated space is incorporated by the partition of unity approach. The classical 
FEM is a special case of the GFEM (Babuska, Banerjee and Osborn, 2004). 

Let{ }iη  be a partition of unity subordinate to the cover { }iΩ  of domainΩ satisfying: 
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If a local function space ( )Ω∩ΩΗ⊂ iiS  can approximate u on each patch Ω∩Ω i , then the GFEM global 

space S and the approximate solution uh on Ω  are obtained by: 
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where ija  are the degrees of freedom. 

In the GFEM proposed in this work the cover { }iΩ  corresponds to the finite element mesh and the patches iΩ  are 

the subdomais of Ω  obtained by union of the elements that share node xi. For the element with two degrees of freedom 
(Fig. 2) the partition of unity functions in the subdomain ( )11, +−=Ω iii xx  are the linear FEM local form functions: 
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In order to guarantee the global space regularity and allow introduction of the boundary conditions by the 

conventional finite element procedures, the approximated local space on subdomain ( )11 , +−=Ω iii xx  takes the form: 
 

{ }Kjji spanS 2121 γγφφ= ,  lnj ,,2,1 K=  (29) 
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where jλ  are the eigenvalues obtained by Eq. (22) and nl  is the number of enrichment levels. 
 
6. APPLICATION 
 

The free vibration of an uniform clamped-free beam in lateral motion, with length L, second moment of area I, 
elasticity modulus E, mass density ρ  and cross section area A, is analyzed in order to demonstrate the application of the 
proposed method. The analytical natural frequencies ( rω ) of this beam are obtained by the solution of the equation: 

 
( ) ( ) 01coshcos =+LL rr κκ      , K,2,1=r  (36) 
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To check the efficiency of the proposed GFEM the results were compared to those obtained by h-version of FEM, 

by p-version of FEM and by c refinement of CEM. The eigenvalue Lrr .κχ =  is used to compare the analytical 
solution with the approximated ones. In the analyses by p-version of FEM, CEM and GFEM, the beam was described 
geometrically by one element and the successive refinements were obtained increasing the number of form functions. 
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Figures 3 to 6 present the evolution of relative error for the eight earliest eigenvalues in logarithmic scale. The total 
number of degrees of freedom corresponds to the effective number of them after introduction of boundary conditions. 

 

 
 

Figure 3. Relative error (%) for the 1st and 2nd beam eigenvalues 
 

 
 

Figure 4. Relative error (%) for the 3rd and 4th beam eigenvalues 
 

 
 

Figure 5. Relative error (%) for the 5th and 6th beam eigenvalues 
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Figure 6. Relative error (%) for the 7th and 8th beam eigenvalues 
 
Analyzing the results obtained for the clamped-free beam, one observes that the results from the p refinements of the 

FEM and the proposed GFEM show convergence rates greater than the h refinement of the FEM and the c refinement of 
CEM. The hierarchical p refinement of the FEM has greater accuracy than the GFEM for the first six eigenvalues. 
Otherwise, the GFEM showed better precision than the p version of the FEM for eigenvalues with order higher than six.  

Table 1 shows the relative error for the first eight eigenvalues Lrr .κχ = obtained by different methods in 
comparison to the analytical solution. The h-version of the FEM solution was obtained with 50 elements, that is, 100 
effective degrees of freedom. The CEM solution was obtained with one element and 58 enrichment functions that 
corresponds to two nodal degrees of freedom and 58 c degrees of freedom, resulting in 60 effective degrees of freedom. 
The problem was also solved by the p refinement of the FEM with one hierarchical nine node element that corresponds 
to 16 effective degrees of freedom. The GFEM solution was obtained with one element and 7 enrichment levels (nl = 7) 
that corresponds to two nodal degrees of freedom and 14 field degrees of freedom resulting in 16 effective degrees of 
freedom. 
 

Table 1. Results to free vibration of uniform clamped-free beam. 
 

h FEM 
ndof = 100 

c CEM 
ndof(1)  = 60 

p FEM 
ndof(1)  = 16 

GFEM 
ndof(1)  = 16 

Eigenvalue 

error (%) error (%) error (%) error (%) 
1 4,623 e-7 1,753 e-7 1,675 e-17 2,773 e-11 
2 2,622 e-6 1,164 e-8 1,517 e-16 4,199 e-9 
3 2,112 e-5 3,702 e-7 3,204 e-16 8,848 e-8 
4 8,101 e-5 1,676 e-6 8,191 e-12 6,592 e-7 
5 2,211 e-4 4,710 e-6 6,734 e-10 2,899 e-6 
6 4,927 e-4 1,067 e-5 4,120 e-6 9,179 e-6 
7 9,595 e-4 1,940 e-5 3,694 e-5 2,284 e-5 
8 1,697 e-3 3,302 e-5 1,033 e-2 4,602 e-5 

(1) : ndof = number of effective degrees of freedom after introduction of boundary conditions. 
 

Analyzing the results in Tab. 1, one observes that the results from the GFEM are more accurate than those obtained 
by h-version of FEM and c-version of CEM with superior number of degrees of freedom. The hierarchical p refinement 
of FEM with 16 degrees of freedom is more accurate than GFEM with same number of degrees of freedom just for the 
first six eigenvalues. 
 
7. CONCLUSION 
 

This work presents the variational form to the free vibration problem of straight Euler-Bernoulli beams with 
classical boundary conditions.  

The h and p-versions of FEM, the AMM and the CEM were presented. In the Assumed Mode Method (AMM) and 
the Composite Element Method (CEM), the local form functions of a FEM conventional element are enriched by 
adding non-polynomial functions obtained from closed form solutions of the classical theory. These approaches produce 
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hierarchical refinements. In the proposed Generalized Finite Element Method (GFEM), the AMM enrichment functions 
are added to the FEM form functions by the partition of unity approach. This technique produces a hierarchical p 
refinement and allows a direct introduction of boundary conditions like in FEM. 

To compare these methods, some eigenvalues of free vibration of a clamped-free beam were calculated. The 
proposed GFEM was compared to h and p refinements of FEM, and to the c refinement of CEM. The results have 
shown that the proposed GFEM presents convergence rates greater than those obtained from CEM and h refinement of 
FEM for all eigenvalues obtained. The GFEM results for eigenvalues with order higher than six were better than those 
obtained by the p refinement of FEM. Moreover the hierarchically superiors form functions of the proposed GFEM are 
easier to obtain compared to p-version of FEM. 

New GFEM enrichment functions and the application of this method in vibration analysis of frames, plates and 
shells will be investigated in future works. 
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