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Abstract. This work concerned with a numerical study of non-linear viscoplastic materials subjected to inertia flows.  
The mechanical model employed the continuity and motion equations coupled with a rheological model for non-
linear viscoplasticity,  recently introduced by Souza Mendes and Dutra (2004) – the so-called SMD fluid model.  
Numerical  approximations  for  the  governing  equations  have  been  carried  out  via  a  multi-field  stabilized  finite  
element method - based on the Galerkin least-squares methodology - which has as primal variables extra-stress,  
pressure and velocity fields. Aiming to investigate the morphology of  yield surfaces of viscoplastic materials flowing  
under inertia influence, some two-dimensional numerical simulations of inertia flows of an SMD fluid around the  
confined cylinder have been performed. The aspect ratio between the channel and the cylinder has been fixed as two-
to-one, and the rheological and kinematic properties of SMD fluid flows have been considered as follows: the SMD  
dimensionless viscoplastic number – the jump number – was ranged from 1 to 100, the power-law index from 0.5 to  
1.0, the dimensionless flow-rate from 0.25 to 1.0 and the Reynolds number from 4 to 29. In all computations, the  
primal variables have been approximated by equal-order Lagrangian bi-linear interpolations – violating, in this way,  
the compatibility conditions involving the extra stress-velocity and pressure-velocity finite element sub-spaces. The  
obtained  results  have  confirmed  the  good  stability  features  of  the  multi-field  formulation  and  were  physically  
meaningful.

Keywords: Viscoplastic fluids, SMD model, Multi-field stabilized formulation, Galerkin least-squares methodology,  
flow around a confined cylinder.

1. INTRODUCTION 

Although viscoplastic fluid models do not describe normal stress differences or time-dependent elastic effects, they 
have been used to predict the mechanical behavior of a large class of industrial materials. These models may describe 
an yield stress limit for the material, i. e., it only flows when the applied stress lies beyond this limit. Among classical 
constitutive  equations  employed  to  model  viscoplasticity,  Bingham,  Herschel-Bulkley  and  Casson models  may be 
quoted (Bird et al., 1987).

However, in the last decade, experimental observations of viscoplastic materials (Barnes, 1999) have lead to the 
conclusion  that  the  yield  stress  actually  is  an apparent  phenomenon and  it  could only be  employed  to  model  the 
mechanical  behavior of some structured liquids. This class of non-Newtonian fluids present severe changes in their 
mechanical properties within a very small range of stress - as pointed out, for instance, by Souza Mendes and Dutra 
(2004). In this article, the authors introduced a new constitutive model for non-linear viscoplastic materials, which has 
proved to be able to prescribe a complete flow curve for viscoplastic materials. First, for low stress ranges, the material 
presents a high Newtonian viscosity; second, for a stress range around its apparent  yield limit, the material suffers 
drastic changes in its structure, presenting a jump in the shear rate; and last, for stresses higher than the yield stress, the 
fluid shear-thins – see, for a detailed explanation, Souza Mendes and Dutra (2004).

The main goal of this article has been to perform two-dimensional finite element approximations for a non-linear 
viscoplastic materials flowing under inertia influence. Hence, it has employed the viscoplastic equation introduced by 
Souza Mendes and Dutra (2004) – hereafter, simply called SMD fluid. This model has been approximated via a multi-
field  stabilized  method  for  extra-stress,  pressure  and  velocity,  based  on  Galerkin  least-squares  strategy. This 
methodology, introduced by Hughes et al. (1986) for the Stokes problem and later extended to incompressible Navier-
Stokes equations in Franca and Frey (1992), does not need to satisfy the compatibility conditions arisen from finite 
element sub-spaces for extra-stress-velocity and velocity-pressure fields. In addition, it enhances the classical Galerkin 
stability by adding mesh-dependent terms which are functions of the residuals of Euler-Lagrange equations, evaluated 
element-wise. Since these residuals are trivially satisfied by the exact solution of the problem, consistency is preserved 
in these class of method. 

In this article, SMD fluid flows around a circular cylinder inside a planar channel, with a fixed aspect ratio of two-
to-one, have been numerically simulated. In order to evaluate the influence of yield stress limit, shear-thinning, flow-
rate and inertia on  yield surfaces of viscoplastic materials, the SMD dimensionless number – the jump number, J – has 
been ranged from 1 up to 100, the power-law index from 0.5 to 1.0, the dimensionless flow-rate, u*, from 0.25 to 1.0 
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and  the  Reynolds  number  form  4  to  29,  respectively.  In  numerical  simulations,  a  combination  of  equal-order 
Lagrangian bilinear interpolations have been employed to approximate the primal variables of the problem, violating 
the compatibility conditions involving the finite element sub-spaces for these variables. Numerical results generated in 
this work have reassured the fine stability features of the employed multi-field stabilized formulation and have been 
able to describe the flow dynamics of non-linear viscoplastic materials.

2. THE MECHANICAL MODEL

From the principles of mass conservation and momentum balance (Astarita and Marrucci,  1974), the following 
multi-field formulation for flows of inelastic non-Newtonian fluids may be stated ,

[∇ u ]u−div∇ p=f in 

−2 ̇D u=0 in 

div u=0 in 

    (1)

where  is the flow domain, u the fluid velocity,  the density,   the extra-stress tensor, p the hydrostatic pressure and f 
the body force vector. 

For  inelastic  non-Newtonian  fluids,  the extra-stress  tensor  may be modeled as  a  generalized  Newtonian  liquid 
(GNL) (Bird et al., 1987),

=2 ̇D     (2)

where  ̇ is the apparent fluid viscosity, a function of the second invariant of the strain rate tensor, D (Bird et al., 
1987),

̇=2tr D21 /2     (3)

The apparent viscosity function used in this work was the one recently introduced by Souza Mendes and Dutra 
(2004) for non-linear  viscoplastic materials. This new material  equation, thereafter just referred as SMD, has been 
already proved suitable for a wide class of real viscoplastic liquids. The SMD model for shear stress may be expressed 
by the following expression,

=1−exp−0 ̇/00K ̇n     (4)

where 0 is the yield stress of the viscoplastic material, K its consistency index, η0 its Newtonian viscosity for very low 
values of shear rate  n the power-law exponent, which controls the viscosity shear-thinning beyond the material yield 
limit, and  the magnitude of the shear stress tensor,  , given by

=1 /2tr 21/2     (5)

From Eq. (2) and (4), the SMD viscosity function may be written as

 ̇=1−exp−0 ̇/0
0

̇
K ̇

n−1
     (6)

with the magnitude of the shear rate tensor D given by Eq. (3).

3. FINITE ELEMENT MODELING

Assuming a bounded flow domain ⊂2, with a regular boundary . Based on the multi-field formulation defined 
by Eq. (1) coupled with the SMD viscosity function, Eq. (6), a multi-field boundary-value problem for inertia flows of 
nonlinear viscoplastic fluids may be stated as,
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[ ∇u ]u−div ∇ p=f in 

−2 1−exp −02tr D2


1 /2
/002tr D2


−1/2

K 2tr D2

n−1/2

D u=0 in 

div u=0 in 

u=ug on g

[−p I ]n=t h on h

    (7)

where I is the unity tensor, n the outward unit vector, th the stress vector, g and h the portions of boundary  on which 
Dirichlet and Neumann conditions are imposed, respectively, and the remaining variables and parameters defined as 
previously.

The finite element approximation for the multi-field boundary-problem defined by Eq. (7) may be built employing 
the following finite element sub-spaces for extra stress ( h), velocity (Vh) and pressure (Ph) fields,

V h={v∈H0
1 N∣v| K∈Rk KN , K∈h}

V g
h
={v∈H 1


N
∣v| K∈Rk K 

N , K∈
h , v=ug on g}

Ph
={p∈C0

∩L2
0
∣p| K∈R lK  , K∈

h
}


h
={S∈C0


NxN

∩L2
NxN∣Sij=S ji , i , j=1, N , S | K∈RmK 

NxN , K∈
h
}

    (8)

with Rk,  Rl and  Rm denoting polynomial spaces of degree  k, l  and m, respectively, the functional space of continuous 
functions  C0() and the Sobolev space  H1() defined in the usual way (Ciarlet, 1978) and the Hilbert and Sobolev 

space L2
0 and H 0

1 defined, respectively, by

L2
0
={q∈L2 ∣∫


qd=0}

H 0
1
={w∈H 1

∣∂ xi
w∈L2

∣w=0 ong , i=1, N }
    (9)

3.1 A multi-field stabilized formulation

Based  on  the  finite  element  sub-spaces  defined  by  Eq.  (8),  a  multi-field  stabilized  Galerkin  least-squares-like 
formulation for SMD viscoplastic fluid flows may be written as: given the functions of body force f and Dirichlet and 
Neumann boundary conditions th,and ug,respectively, find the triple ( h,ph,uh) ∈  h× Ph × Vg

h  such that

B  h, ph ,uh;Sh, qh , v h=F Sh , qh , v h ∀ Sh , qh , vh ∈  h× Ph× Vg
h   (10)

with 

B 
h , ph ,uh;Sh, qh , v h

=[2 1−exp−02tr D2

1 /2
/002tr D2


1 /2
K 2tr D2


n−1 /2

]
−1∫




h
⋅Shd

∫

[∇ uh

]uh
⋅v hd−∫


⋅D v h

d−∫


pdiv vh d∫


div uh qhd∫


ph qhd−∫


D u h⋅Shd

∑
K∈h

∫
K

 [∇ uh] uh∇ ph−div ⋅ ReK [∇ vh]uh∇ qh−div Shd∫


div uhdiv v hd

2 1−exp−02tr D2

1 /2
/002tr D2


1 /2
K 2tr D2


n−1 /2

 .

.∫

[21−exp−0 2tr D21/2/00 2tr D2−1 /2K 2tr D2n−1 /2]−1 h−Duh.

⋅[2 1−exp −02tr D21/2/002tr D2−1/22tr D2n−1/2]−1 Sh−Dv hd
   (11)

and 

F Sh , qh, vh
=∫


f⋅vh d∫

 h

th⋅v hd∑
K∈h

∫
K

f⋅  ReK [∇ vh
]uh

∇ qh
−div Sd   (12)

where the grid Reynolds number ReK and the stability parameters  (ReK) and  are defined as in Franca and Frey 
(1992), 
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ReK =
hK

2∣uh∣p
 ReK 

ReK={ReK , 0ReK1
1, ReK1 }

ReK=
hK∣u

h∣p mk

4 1−exp−02tr D2


1/2
/002tr D2


−1 /2

K ̇
n−1



mk=min {1 /3,2C k}

C k ∑
K∈h

hK
2∥div Sh∥0, K

2 ≥∥Sh∥K
2 ∀ Sh∈ h

  (13)

the stabilized parameter of the SMD viscoplastic constitutive equation,    set as 0.25, according the error estimate  
introduced in Behr et al. (1993).

3.2 Nonlinear strategy

The substitution of finite element approximations for the trial functions (h,ph,uh) and their respective test functions 
(Sh,qh,vh) - expressed as linear combinations of shape functions and unknown degrees of freedom – in the stabilized 
formulation defined by Eq. (10)-(13), gives rise to the following set of residual equations,

R Uh=0   (14)

where U is the vector of degrees of freedom formed by  , p and u at all nodal points, U=[ ,p,u]T , and R(U) is given by 
the set of matrices

R U =[1E ̇1−HE u][N uNu−K−1HT
−GT

 ]u
[GGu ]p−[FF u]

  (15)

where [H] is the matrix derived from the surface force term of motion equation, and [HT] the matrix from the stress­
deformation relation term of SMD viscoplastic  equation, [E] the matrix from extra­stress  term of SMD viscoplastic 
equation, [N] the matrix from the inertia force term of motion equation, [K] the matrix from the diffusive term of SMD 
viscoplastic equation, [G] and [GT] the matrices from the pressure term of motion equation and incompressibility term 
of continuity equation, respectively, and [F] the matrix from the body force­term of motion equation. Matrices with 
­subscript are derived from the stabilized terms of motion equation, [] the matrix from ­stabilized­term of continuity 
equation and [] the matrix from the ­term of continuity equation.

In  order  to solve the residual  set  of non-linear  equation defined by Eq. (14)-(15),  the following quasi-Newton 
algorithm may be introduced,

Algorithm:

I. Estimate the vector Uk=0 and set the convergence criterion as 10-7.
II. Solve for the incremental vector ak+1 the linear system,

J Uk a k1=−R Uk 
  (16)

where R(U) is given by Eq. (15) and the Jacobian matrix J(U) defined by

J U =1E ̇1−HE u , ̇[∂UE u , ̇]

MN u N u ,̇K−1HT
−GT

[∂U N uN u ,̇] u

GG u , ̇P[∂U G u ,̇] p∂U F u ,̇

  (17)

III. Compute the vector Uk+1:

Uk1=Ukak1
  (18)
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IV. If ∣R Uk1∣∞ , then update k and go back to step II; otherwise, store solution Uk+1 and exit the algorithm.

Remark: As initial solution estimative, null velocity, pressure and extra stress fields have been employed.

4. NUMERICAL RESULTS

In this section, a multi-field stabilized formulation, defined by Eq. (10)-(13), has been employed to approximate 
SMD fluid  flows  around  a  cylinder  of  circular  cross-section  kept  inside  a  planar  channel.  Due  to  the  geometric 
symmetry of the problem, only one half of the domain has been considered in all computations. The imposed velocity 
and  extra-stress  boundary  conditions  were:  uniform  parallel  velocity  u0 at  channel  inlet  and  outlet,  no-slip  and 
impermeability on channel walls and cylinder surface, and symmetry conditions at channel centerline (∂2u1=u2=12=0). 
The channel aspect ratio, namely the half channel width (H) divided by the cylinder radius (R), has been set as two-to-
one. In order to guarantee fully-developed flows upstream and downstream of the cylinder,  the mesh length either 
before or after the cylinder has been equal to 17R – see Fig. 1a for the problem statement.

(a) (b)

Figure 1. Flow around a cylinder: (a) problem statement; (b) detail of the employed mesh around the cylinder.

In order to investigate the flow dynamics of SMD fluids, Souza Mendes et. al (2007) introduced a new viscoplastic 
dimensionless parameter – so-called jump number, J -which takes into account the relative measure of  shear rate jump 
when the shear stress is approximately equal to the material stress limit,  0. (This may be seen at the dimensionless 
SMD flowchart and viscosity curve shown in Fig. 2). Mathematically, the jump number may be given by

J≡
̇1−̇0

̇0

=
00

1−n/n

K 1/n
  (19)

since ̇0 and ̇1 are, respectively, the shear rate values at the beginning of the shear rate jump and at the power-
law region, i. e., ̇0≡0 /0 and ̇1≡0/K 1 /n  - see Souza Mendes et. al (2007) for more details..

(a) (b)

Figure 2. Dimensionless SMD model for n=0.5: (a) Flow chart; (b) SMD viscosity function.

In addition, to study the influence of inertia effects on viscoplastic fluid flows, the Reynolds number based on the 
power-law viscosity function has been stated as

Re=
uc

2−n Lc
n

K
  (20)
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where the characteristic velocity  uc was the velocity at the channel inlet and the characteristic length Lc was the half 
channel width (H); the remaining variables have been defined as previously.

In the numerical simulations, the jump number, J, was investigated from 1 to 100, the power law index, n, from 0.5 
to  1.0,  the  Reynolds  number  from  4  to  29  and  the  dimensionless  average  velocity  in  the  inlet  channel, 

u∗=u K 1 /n/ 0
1 /n Lc , from 0.25 to 1.0. After a mesh independence procedure, it has been chosen a finite element 

mesh consisting of a combination of equal order bi-linear Lagrangian elements (Q1/Q1/Q1), for extra-stress, velocity and 
pressure. The total number of elements was 11,584 and the number of nodal points was 11,957, and the mesh was more 
refined at the vicinity of the cylinder – see Fig. 1b for a detail of the selected mesh.

The influence of the jump number on the development of unyielded zones (the black ones in the figures) in SMD 
viscoplastic inertialess fluid flows has been shown in Fig. 3. In this figure, the jump number was varied from J=1 (Fig. 
3a and 3c) to  J=100 (Fig. 3b and 3d),  the Reynolds number was set as zero,  the power law index as 1.0 and the 
dimensionless inlet velocity – the flow rate – as 1.0. One may observe that, as J grows, the size of unyielded regions at 
the cylinder vicinity was strongly reduced - regions subjected to high strain rates. On the other hand, the regions of fully 
developed flow upstream and downstream of the cylinder – the so-called plug flows – were only lightly influenced by 
the growth of  jump number,  since  those  regions  correspond  to  very  low strain  rates.  The  pressure  drop has  also 
experimented a low increasing as the jump number  J  increased – compare Fig. 3c, for  J=1, and Fig. 3d, for  J=100. 
Besides, from the numerical point of view, the smooth pressure contours illustrated in Fig. 3d – for J=100, assured the 
good stability  features  of  the employed multi-field  method even  for  flows subjected to  a  very high material  non-
linearity 

(a) (b)

(c) (d)

Figure 3. Yield surfaces and pressure contours, for Re=0, n=1.0 and u*=1.0: (a) and (c) J=1; (b) and (d) J=100.

In Fig. 4, the yielded (the white ones in the figures) and unyielded zones, still for inertialess flows (Re=0),  the 
dimensionless velocity  u* at channel inlet ranging from 0.25 to 1.0, the power-law coefficient n=0.5 and the jump 
number J=1, have been shown. As it may be noticed, all unyielded regions decreased with the growth of dimensionless 
velocity  u*.  The  plug-flow  regions  of  upstream  and  downstream  channels  have  strongly  decreased  when  the 
dimensionless velocity increased from u*=0.25 (Fig. 4a) to 1.0 (Fig. 4b). In the other unyielded regions, namely the 
islands above the cylinder  at  mid distance  between cylinder  and channel  wall,  and the polar  caps  at  centerline  – 
according  to  the nomenclature  introduced  by Zisis and Mitsoulis  (2002),  the flow-rate  increasing  also produced a 
decrease of these zones – see  Fig. 4a, for  u*=0.25, and Fig. 4b, for  u*=1.0. This behavior maybe explained by the 
shear-rate increasing imposed by the increasing of u*, which causes shear stresses greater than the yield stress (τ>τ0). 
Another  point  to  be  highlighted  is  the perfect  symmetry  presented  by  -isobands  and  horizontal  velocity  profiles 
upstream and downstream of the cylinder (see, for instance, Naccache and Barbosa (2007)). This theoretical feature on 
fluid  dynamics  of  inertialess  flows  has  been  well-captured  by  the  multi-field  stabilized  method  employed  in  the 
numerical simulations of this article.

(a) (b)
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(c) (d)

Figure 4. Yield surfaces and axial velocity elevation plots, for Re=0, n=0.5 and J=1: (a) u*=0.25; (b) u*=1.0; (c) 
u*=0.25; (d) u*=1.0.

The influence of inertia on SMD viscoplastic fluid flows was also taken into account in this work and is shown in 
Fig. 5 and Fig 6. The numerical simulations were performed varying the Reynolds number from 4.0 to 29.05, n=0.5 and 
J=1.0. As it may be observed, the fully-developed unyielded zones decreased with the growth of the inertia effects.  
Besides, the symmetry between these unyielded regions upstream and downstream of the cylinder has disappeared –  on 
the contrary of what was verified on -isobands, velocity profiles and pressure contours in the inertialess flows shown 
in Fig. 3 and 4. The inertia growth has also given rise to asymmetric islands above the equator and polar caps. Even for 
the lowest value of Reynolds number (Re=4.0, Fig. 6a), it may be noticed the development of a tiny polar cap at the 
back-flow zone just  downstream of the cylinder  – a back-flow region subjected to low shear  rates.  The more the 
Reynolds number has increased, the more the vortex and the unyielded regions at polar caps have increased too, until 
the detachment of the unyielded region from the cylinder surface (Fig. 6d). On the opposite way, the islands over the 
equator - regions subjected to high strain rates – have decreased as Reynolds number increased.

(a) (b)

(c) (d)

Figure 5. Yield surfaces and flow streamlines, for n=0.5 and J=1: (a) Re=4.0; (b) Re=11.31; (c) Re=15.81; (d) 
Re=29.05.

5. FINAL CONCLUSIONS

In this article, finite element approximations for flows of non-linear viscoplastic materials, employing the recently 
fluid model introduced by Souza Mendes and Dutra (2004), have been carried out. The mechanical model defined by 
Eq. (1) was composed by continuity and momentum equations coupled with the SMD viscoplastic viscosity function 
(Eq. (6)). This model has been approximated via a multi-field stabilized method, defined by Eq. (10)-(13), that used 
equal-order  bi-linear  Lagrangian  interpolations  for  extra-stress,  velocity  and  pressure  fields  –  a  combination  of 
interpolations  a priori not satisfying the inf-sup compatibility conditions involving the finite element sub-spaces for 
velocity and pressure and for extra-stress and velocity. 

The numerical simulations of SMD viscoplastic fluids around a circular cylinder, confined inside a planar channel, 
have  led  to  some  conclusions.  First,  for  creeping  flows,  it  may  be  observed  that  the  increasing  either  of  the 
dimensionless inlet velocity or the jump number have decreased the size of material unyielded zones. After, for inertia 
flows, the more the Reynolds number increased, the more the unyielded moving zones decreased and the vortex length 
just downstream the cylinder increased. In addition, the symmetry, the stability and smoothness of the numerical results 
have confirmed the fine features of the multi-field stabilized formulation employed in this work.

(a) (b)
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(c) (d)

Figure 6. A detail of yield surfaces and flow streamlines, for n=0.5 and J=1: (a) Re=4.0; (b) Re=11.31; (c) Re=15.81; 
(d) Re=29.05.
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