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Abstract. The use of classical analogies between turbulent heat and momentum diffusion, employed to estimate the wall
heat transfer rates in turbulent wall flows, is numerically modelated in this work. Some approaches are proposed in order
to quantify the heat transfer rates in recirculation regions of turbulent flows and an algorithm, used to impose heat flux
boundary conditions in turbulent flows modeled with the classic κ − ε model, is developed and validated. The proposed
algorithm uses simultaneously a thermal law of the wall and an interpolating polynomial relation that is constructed
with a data base generated on experimental research and in present numerical simulation. The algorithm of numerical
resolution used to execute the simulations applies a consolidate Reynolds and Favre averaging process for the turbulent
variables and uses the classicalκ − ε model. The turbulent inner layer can be modeled by four distinct velocity laws of
the wall and by one thermal law of the wall. Spacial discretization is done by P1 and P1/isoP2 finite elements and the
temporal discretization is implemented using a semi-implicit sequential scheme of finite differences. The pressure-velocity
coupling is numerically solved by a variation of Uzawa’s algorithm. To filter the numerical noises, originated by the
symmetric treatment to the convective fluxes, it is adopted abalance dissipation method. The remaining non-linearities,
due to explicit calbulations of laws of the wall, are treatedby a minimal residual method.
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1. INTRODUCTION

The study of turbulent flows over solid surfaces is a domain ofgreat industrial interest. In the last decades a huge
amount of work has been done on the development of several turbulence models in order to better represent the dynamic
behavior of complex turbulent flows. These new approaches are usually associated with a higher computational cost and
even though the processing capacity of modern machines is increasing in an expressive speed, the requirements of industry
are still for faster simulations with a good quality of results. By these reasons, according to Chen and Jaw (1998), the
classic high Reynoldsκ − ε model is still the most used turbulence model in industry.

In terms of a relation between cost and benefit theκ − ε model is capable to present good quality of results without
being an expensive model. Among the reasons for the low cost of this model, is expressive the contribution of laws of
the wall, capable to represent the fluid flow behavior in the internal region of the turbulent boundary layer. The adoption
of laws of the wall allows the use of more coarse meshes, sincethe flow in the wall region, witch is dominated by the
highest gradients and by the intricate mechanism of production and dissipation of turbulence is not simulated. The greatest
disadvantage of this approach is the loss of information in the near wall region witch creates, in some cases, additional
complications in the imposition of certain boundary conditions.

In flows heated by the presence of a wall on witch is imposed a specified heat flux, the imposition of this boundary
condition is particular complicated with the high Reynoldsκ − ε model, since the absence of a heat flux law of the wall
compel us to use another approach, in order to simulate this kind of flows.

A possible way to impose heat flux boundary condition, in a high Reynolds turbulence model, is to convert an imposed
heat flux into an equivalent temperature on the wall, by estimating the convection heat transfer coefficient. The heat
transfer rates in turbulent boundary layer flows can be estimated with a good precision by the use of analogies between
momentum and heat diffusion, according to Gontijo and Fontoura Rodrigues (2006). In cases where the boundary layer
is not well established, for example when occurs the boundary layer detachment, the use of analogies is not indicated and
produces bad results as showed by Gontijo and Fontoura Rodrigues (2007).

A numerical methodology developed to impose heat flux boundary conditions in the high Reynoldsκ − ε model, in
flows with and without boundary layer detachment, was proposed by Gontijo and Fontoura Rodrigues (2008). In the
present work, an evolution of this methodology is developed, implemented and validated in three different test cases: the
backward facing step of Vogel and Eaton (1985); the asymmetric plane diffuser of Buice and Eaton (1995); the hill of
Loureiro et. al (2007).

The solver used, named Turbo2D, is a research Fortran numerical code, that has been continuously developed by
members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering Department of the University
of Brasília, in the last twenty years. This solver is based onthe adoption of the finite elements technique, under the
formulation of weighted residuals proposed by Galerkin, adopting in the spatial discretization of the calculation domain
with the triangular elements of the type P1 and P1-isoP2, as proposed by Brison, Buffat, Jeandel and Serres (1985). The
P1-isoP2 mesh is obtained by dividing each element of the P1 mesh into four new elements. In the P1 mesh only the
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pressure field is calculated, while all the other variables are calculated in the P1-isoP2 mesh.
Considering the uncertainties normally existing about theinitial conditions of the problems that are numerically sim-

ulated, it is adopted the temporal integration of the governing equations system. In the temporal integration process the
initial state corresponds the beginning of the flow, and the final state occurs when the temporal variations of the velocity,
pressure, temperature and other turbulent variables stop,in order to reach the final state, a pseudo transient occurs. The
temporal discretization of the system of the governing equations, implemented by the algorithm of Brun (1988), uses se-
quential semi-implicit finite differences, with truncation error of order0(∆t) and allows a linear handling of the equation
system, at each time step.

The resolution of the coupled equations of continuity and momentum is done by a variant of Uzawa’s algorithm
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress tensor
is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications introduced by Launder
and Spalding (1974). The turbulent heat flux is modeled algebraically using the turbulent Prandl number with a constant
value of 0,9.

In the program Turbo2D, the boundary conditions of velocityand temperature can be calculated by four velocity and
two temperature laws of the wall. The velocity laws of the wall used in this work are: the classical logarithm law, and
the laws of Mellor (1966), Nakayama and Koyama (1984), and Cruz and Silva Freire (1998). The temperature law of
the wall used is the Cheng and Ng (1982) law of the wall. The numerical instability resultant of the explicit calculation
of the boundary conditions of velocity, through the evolutive temporal process, is controlled by the algorithm proposed
by Fontoura Rodrigues (1990). The numerical oscillations induced by the Galerkin formulation, resultant of the centered
discretization applied to a parabolic phenomenon, that is the modeled flow, are cushioned by the technique of balanced
dissipation, proposed by Huges and Brooks (1979) and Kelly,Nakazawa and Zienkiewicz (1976) with the numerical
algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo2D,
the wall heat fluxes obtained numerically are compared to theexperimental data of Vogel and Eaton (1985) and two
qualitative test cases were proposed based on the works of Buice and Eaton (1995) and Loureiro et. al (2007).

2. GOVERNING EQUATIONS

The system of non-dimensional governing equations, for a dilatable and one phase flow, without internal energy
generation, and in a subsonic regime, Mach number under0, 3, is:
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In this system of equationsρ is the fluid density,t is the time,xi are the space cartesian coordinates in tensor notation,
µ is the dynamic viscosity coefficient,δij is the Kronecker delta operator,gi is the acceleration due to gravity,T is the
absolute temperature,ui is the flow velocity ,k is the thermal conductivity,Re is the Reynolds number,Fr is the Froud
number,Pr is the Prandtl number, and the non dimensional pressure is

p =
p − pm

ρoU2
o

, (5)

wherepm is the average spatial value of the pressure field,p is the actual value of pressure,ρ0 andu0 are the reference
values of the fluid density and the flow velocity . More detailsabout the dimensionless process are given by Brun (1988).
In order to simplify the notation adopted, the variables in their dimensionless form have the same representation as the
dimensional variables. The Reynolds, Prandtl and Froude numbers are defined with the reference values adopted in this
process.

2.1 THE TURBULENCE MODEL

In this work all the dependent variables of the fluid are treated as a time average value plus a fluctuation of this
variable, in a determinate point of space and time. In order to account variations of density, the model used applies the
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well known Reynolds (1985) decomposition to pressure and fluid density and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a randomize generic variableϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (6)

Applying the Reynolds (1895) and Favre (1965) decompositions, to the governing equations, and taking the time
average value of those equations, we obtain the mean Reynolds equations:
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∂ũi

∂xj
+

∂ũj
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∂ũl

∂xl
δij

]
, (9)

∂(ρT̃ )

∂t
+
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In these equationsα is the molecular thermal diffusivity and two news unknown quantities appear in the momentum
(8) and in the energy equations (10), defined by the correlations between the velocity fluctuations, the so-called Reynolds
Stress, given by the tensor−ρu′′

i u′′

j , and by the fluctuations of temperature and velocity, the so-called turbulent heat flux,

defined by the vector−ρu′′

i T ′′.
The Reynolds stress of turbulent tensions is calculated by theκ − ε model, proposed by Jones and Launder (1972)

with the modifications introduced by Launder and Spalding (1974), wheresuggest
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The turbulent heat flux is modeled algebraically using the turbulent Prandl numberPrt equal to a constant value of
0,9 by the relation
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In the equation (14)Cµ is a constant of calibration of the model, that values0, 09, κ represents the turbulent kinetic
energy andε is the rate of dissipation of the turbulent kinetic energy. Once thatκ andε are additional variables, we need
to know there transport equations. The transport equationsof κ andε were deduced by Jones and Launder (1972), and
the closed system of equations to theκ − ε model is given by:
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with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

2.2 NEAR WALL TREATMENT

Theκ − ε turbulence model is incapable of properly representing thelaminar sub-layer and the transition regions of
the turbulent boundary layer. To solve this inconvenience,the solution adopted in this work is the use of laws of the wall
for temperature and for velocity, capable of reasonably representing the flow in the inner region of the turbulent boundary
layer.

There are four velocity and two temperature laws of the wall implemented on Turbo 2D. In this work was used just
the classic logarithmic law for velocity and the the law of the wall of Cheng and Ng (1982) for temperature, witch is
explained bellow.

2.2.1 Temperature law of the wall of Cheng and Ng (1982)

For the calculation of the temperature, Cheng and Ng (1982) derived an expression for the near wall temperature
similar to the logarithmic law of the wall for velocity. For the laminar and turbulent regions, the equations are respectively
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whereT0 is the environmental temperature,y is the normal distance up to the wall,ν is the cinematic viscosity andTf is
the friction temperature, as defined by Brun (1988)
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and the friction velocityuf is calculated by the relation
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The intersection of these regions are aty∗ = 15, 96 and the constantsKNg andCNg are, respectively,0, 8 and12, 5.

2.3 THE STANTON NUMBER

In many engineering practices the representation of important parameters are made in a non dimensional form. The
wall heat flux, for example, can be estimated in a non dimension basis by using the local Stanton number, that can be
calculated by two distinct manners. The first one is the definition of the Stanton number, wich is a representation in a
dimensionless form of the local wall heat fluxqx:

Stx =
qx

ρcpu∞(Tw − T∞)
where, for a flat plate qx = −k

(
∂T
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)

y=0

. (28)
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In equation (28) an accurate calculation of the temperaturegradient is a difficult task since the use of laws of the wall
produce the loss of some information in the wall region.

Another way to compute the local Stanton number is based in the use of analogies. An special analogy, derived from
a diversification of the Reynolds analogy, made by Colburn (1933) for fluids with the Prandtl number equal or larger than
0, 5, is called the Colburn analogy. The Colburn (1933) empirical correlation establish a relationship between the local
Stanton numberStx, the local friction coefficientCfx and the Prandtl numberPr

Stx =
Cfx

2Pr
2

3

. (29)

In equation (29), the local friction coefficientCfx is calculated with the use of the friction velocityuf , equation (27),
numerically calculated by the Turbo2D code as

Cfx

2
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τw

ρu2
∞

with τw = ρu2
f so Cfx = 2

u2
f

u2
∞

. (30)

2.4 PROPOSED ALGORITHM

The algorithm here proposed to be used in turbulent thermal flows, with a specified heat flux as the wall boundary
condition, is based in a numerical methodology that can be resumed by the following steps:

1. The value of the local friction velocityuf calculated by equation (27) is used to determine the value ofthe local
friction coefficient.

Cfx = 2
u2

f

u2
∞

(31)

In equation (31),u∞ represents the velocity outside the boundary layer or a caracteristic scale of velocity.

2. The value ofCfx is then used to calculate the local Stanton number, using theColburn(1933) analogie as expressed
in eq.(32).

Stx =
Cfx

2Pr2/3
(32)

3. By the definition of the Stanton number it is possible to estimate the value of the local convective heat flux coeffi-
cient, with eq.(33).

hx = StxρCpu∞, (33)

whereCp represents the specific heat at a constant pressure.

4. With the value ofhx it is possible to do an approximately conversion of the localheat flux into an equivalent
wall temperature. This information is then sent to the temperature law of the wall that calculates the temperature
boundary condition in each wall node of the mesh.

The main idea of this algorithm is to use the values of dynamical parameters of the flow in the wall, such as the friction
velocity, to estimate the heat transfer rates with the use ofclassical analogies, in order to convert an imposed heat flux
in the wall into a calculated wall temperature, so the thermal law of the wall can calculates the temperature boundary
condition in the wall nodes.

It is important to say that, for recirculation regions, a correction must be done in the value of the local Stanton number,
since the detachment of the boundary layer cause to perish ofanalogies between heat and momentum diffusion. In the
following sections is shown the evolution of the original methodology proposed by Gontijo and Fontoura Rodrigues
(2008), with the numerical corrections that must be done in the local Stanton number.
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3. NUMERICAL MODELING AND RESULTS

The test case used to develop the proposed methodology is thethermal backward facing step of Vogel and Eaton
(1985). The schematic representation of the calculation domain is described in figure (1). The dimensions in figure (1)
are: h = 0,038 m, H = 0,15 m,ξ = 0,2 m and L = 0,6 m. At the inlet of the calculation domain where imposed flat velocity
and temperature profiles with the purpose of allow the flow development before the detachment point, since there is some
uncertainty about the experimental inlet profiles. Theκ andε values, at the inlet, where estimated based on the turbulence
level of the wind tunnel described by Vogel and Eaton (1985).At the wall of the backward facing step a condition of
constant heat flux is imposed and in the top wall, an adiabaticcondition was established. At the outlet of the calculation
domain the gage pressure of the flow is null. The Reynolds number based on the height of the step is 27023. The free
stream velocity flow is 11,3 m/s and the heat flux imposed is 270W/m2. The low value of the imposed heat flux was
setted to avoid significant variations of the thermodynamicproperties of the fluid by the increase of temperature, such
as the fluid density, even though in the numerical resolutiona dilatable formulation was used in order to produce a more
accurate value of the dynamical and thermal field of the flow.

Figure 1. Calculation domain - Vogel and Eaton (1985) test case

The P1-isoP2 mesh used to execute the simulation has 8016 elements, while the P1 mesh contains 2004 elements.
Indeed, eight thousand elements, for this domain, constitute a reasonable refined mesh. The final dimension of the mesh
was obtained with a mesh study. This number of elements were able to provide a numerical simulation with a low
computational cost and a good quality of the results, as the next sections will show. It is also important to say that a
greater refinement level was adopted in the near wall elements. This procedure is important, since higher gradients appear
in this region.

The Stanton number behavior through the lower wall was numerically calculated with the use of the Colburn (1933)
analogy, equation(32), by using the values of the friction velocityuf to estimate the Stanton number. Figure (2a) shows
that the numerical values, inside the recirculation region, have the same qualitative behavior of the experimental values,
but are different by a scale factor.

Figure 2. Numerical and experimental behavior of the Stanton number (a), velocity field and streamlines of the flow (b)
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The analysis of the numerical simulation of Vogel and Eaton test case make evident the following features: outside the
recirculation zone the numerical and experimental values are very close; the higher values of the Stanton number occur
near the retachment point; the numerical values ofStx andCfx goes to values near zero at the retachment point, since
the shear stress in the wall is very small at this locus. This shows that the use of classical analogies are not appropriated
in flows with boundary layer detachment, as showed by Gontijoand Fontoura Rodrigues (2007b).

Even recognizing that the use of classical analogies insidedetached boundary layers have serious limitations, the
qualitative behavior shown in figure (2a) suggests that the adoption of an adjust factor to the Stanton number, inside this
region, may improve the quality of those results. It is important to notice that the observed values ofStx will change with
the distance between the wall and the first node of the mesh. Bythis reason, the function to adjust the Stanton number in
the detached boundary layer region, must have like independent variable the distance between the wall and the first node
of the mesh. Our choice was to use a non dimensional form of themaximum value of the distance to the wall,y+

max,
defined by the relation

y+
max =

ufmaxδ

ν
, (34)

whereuf max is the highest value of the friction velocity calculated through the wall nodes of the calculation domain,δ is
the distance between the wall and the first node of the mesh andν is the kinematic viscosity of the fluid.

With the definition ofy+
max, several simulations were executed with different values of y+

max, and an adjust constant
was calibrated for each simulation. With this methodology an adjust function was created and it’s behavior is well shaped
by a power law, as expressed by the following equation:

f(y+) = 5, 46y+
−0,2936

max . (35)

With the aid of the correction shape function, the proposed equation for the calculation of the Stanton number, inside
recirculation regions, is the modified Colburn analogie:

Stx = max

(
Cfx

2Pr2/3
5, 46y+

−0,2936

max ; 0, 0128

)
. (36)

With this approach the discontinuity in the Stanton number,at the reattachment point, is avoided and the magnitude
order of the numerical values is very similar to the experimental data. This methodology allows the simulation of turbulent
thermal flows with heat flux boundary condition, using a high Reynolds turbulence model. The most important validation
of this methodology are the temperature profiles obtained for this test case, this results were published by Gontijo and
Fontoura Rodrigues (2008). It was obtained a good approximation between the numerical and experimental values of the
temperature profiles in the lower wall of the thermal backward facing step. This means that this initial approach, at least,
enables the use of heat flux boundary conditions in detached flows simulated with the high Reynoldsκ − ε model.

The first approach to adjust the Stanton number inside the recirculation region can still be improved, as can be seen in
the figure (3), by this reason a second approach was developed. Therefore a non dimensional variablex∗ was defined by
the relation

x∗ =
x − xd

xr − xd
, (37)

wherex defines the local coordinate in the flow direction,xd is the detachment point andxr is the attachment point. After
defining the variablex∗, an interpolation of the experimental values of the Stantonnumber measured by Vogel and Eaton
(1985) inside the recirculation region was done and it produced the following relation

St (x∗) = 0, 00128 + 0, 00458x∗ + 0, 00321x∗2 − 0, 00574x∗3. (38)

After implementing equation (38) in the numerical code, theobtained behavior of the Stanton number is illustrated in
figure (3).

Figure (3) shows that the second approach is capable to produce good values of the local Stanton number inside the
recirculation region. It also shows that after the retachment point a sudden change in the numerical value of the local
Stanton number occurs and that the numerical values recoverthe experimental behavior after a region with approximately
the same length as the recirculation region. Basically whathappens is that after the retachment point, the Colburn (1933)
analogy is used directly to calculate the Stanton number. Analogies between heat and momentum diffusion are developed
for well established boundary layers. After the retachmentof the flow, the boundary layer is being restructured and in this
region is expected that the Colburn (1933) analogy doesn’t work well.

By this reason, a third approach was proposed. This last approach proposes that the interpolation defined in the second
approach, must be extrapolated until the point after the retachment where the boundary layer is well established. In this
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Figure 3. Adjusts obtained by the first and second approach

work, in the absence of best criterion, was arbitrarily considered that the necessary length for this proccess to occur is the
own recirculation region length. The third approach calculates the local Stanton number by the following relation

St (x∗) = 0, 00106 + 0, 00912x∗ − 0, 00895x∗2 + 0, 00233x∗3. (39)

The adjust obtained with this approach is illustrated in figure (4).

Figure 4. Adjusts obtained by the third approach

This is the best approach obtained so far and it is capable to produce great results in this specific test case. In order to
extend this methodology to other geometries, two new test cases were proposed: the asymmetric plane diffuser of Buice
and Eaton (1995) and the turbulent flow over a 2D hill, studiedby Loureiro et. al (2007). The boundary conditions used
to execute these simulations are illustrated in figure (5).

Figure 5. Geometry and boundary conditions of the Buice and Eaton (1995) diffuser (a), geometry and boundary condi-
tions of the Loureiro et. al (2007) 2D hill (b)

In the experimental works of Buice and Eaton (1995) and Loureiro et. al (2007) the thermal field is not considered.
They studied only the dynamical field. What was done to createtwo new test cases based on these experimental works was
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to calculate first the dynamical field of these flows, without inputing any thermal boundary condition. Then, a simulation
with an imposed constant temperature on the wall was executed. After this step, the equivalent thermal energy injected
in the flow is calculated by measuring the temperature profiles before and after the heated wall. Then an equivalent heat
flux was calculated and imposed in the same wall, where the constant temperature condition was imposed. By doing this
procedure is expected that the same energy injected in the flow, by the constant temperature boundary condition, should be
injected by the equivalent constant heat flux condition, if the numerical method used to impose this condition is accurate.
It is important to say that in both cases occur the boundary layer detachment. In order to obtain an accurate behavior of
the velocity and temperature fields inside the recirculation regions, the law of the wall of Cruz and Silva Freire (1998) was
used in both cases. This law was the one with the best performance among all the laws of the wall tested. These results
were published in the master’s dissertation of Gontijo (2009).

Figure (6) illustrates two temperature profiles taken afterthe heated wall for the Buice and Eaton (1995) test case and
two for the 2D hill of Loureiro et. al (2007).
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Figure 6. Temperature profiles in the asymmetric diffuser ofBuice and Eaton (1995) - X/h=26 (a) and in the 2D hill of
Loureiro et. al (2007) in X/h=6.5 (b)

It is possible to notice that the third approach is the final solution for the problem. In order to quantify the improvement
obtained by the evolution of the initial approach, the average value of temperature was taken after the heated wall in four
different points and compared for each approach with the obtained values for the constant temperature condition, this
procedure generated table (1).

Constant temperature First approach Second approach Third approach
Buice and Eaton (1995) test case 326.05 K 342.03 K 320.53 K 320.87 K

Error - 6,37% 0,32 % K 0,21 %
Loureiro et. al (2007) test case 300.07 K 299.54 K 299.84 K 299.89 K

Error - 0.18% 0.08 % K 0.06 %
Table 1. Error comparison for Buice and Eaton (1995) and Loureiro et. al (2007) test cases

The results obtained with the final approach are good. This approach is able to predict the equivalent wall temperature
inside the recirculation regions of flows over distinct boundary geometries, even when the mechanism responsible by the
boundary layer detachment is a very smooth adverse pressuregradient.

4. CONCLUSIONS

This work proposed, implemented and validated a new and original numerical methodology used to impose heat flux
boundary conditions in the high Reynoldsκ − ε model, without the need to create a heat flux law of the wall. Past works
done by the authors were used to develop this methodology based on the employment of classical analogies between fluid
friction and heat transfer on the wall. The test case used to develop this methodology in detached turbulent boundary layers
and also to understand the main obstacles of this approach was the Vogel and Eaton (1985) backward facing step. The
advances done based in this test case were then tested in two other different geometries and showed that this methodology
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can be extended to distinct geometries, even when the detached is induce by smooth adverse pressure gradients. One of
the aspects that can be better studied is the necessary length to the restructuring of the boundary layer after the detachment,
even though in the studied test cases the adopted criterium considered in this work has provided good results.
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