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Abstract. This works shows how some technicalities in the design of thediffuser can affect the turbulent boundary layer
detachment. The behavior of a turbulent flow of air, inside a two dimensional asymmetric straight-walled diffuser, with
an divergence angle of9.97 degrees, is numerically simulated considering some aspects of the solid boundary geometry.
The velocity profiles and the recirculation regions are compared with the experimental data. The research algorithm used
to simulate the turbulent flow applies a consolidate Reynolds averaging process for the turbulent variables and uses the
classicalκ−ε model. The turbulent inner layer is modeled by four distinctvelocity laws of the wall. Spacial discretization
is done by a finite element method and temporal discretization is implemented using a semi-implicit sequential scheme of
finite differences. The pressure-velocity coupling is numerically solved by a variation of Uzawa’s algorithm. To filterthe
numerical noises, originated by the symmetric treatment given to the convective fluxes, it is adopted a balance dissipation
method. The remaining non-linearities, due to laws of the wall explicit calculation, are treated by a minimal residual
method.
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1. INTRODUCTION

In the last three decades great amount of research has been done in the numerical simulation of turbulent flows,
with emphasis on turbulent flows of industrial and environmental interest. In this work we bring into prominence the
detachment of turbulent boundary layer, induced by smooth adverse pressure gradients, like happens inside a straight-
walled diffuser with a divergence angle of9.97 degrees. The diffusers are a geometry of particular interest due to its great
importance in the behavior of a wide diversity of machines.

To avoid the boundary layer detachment in a diffuser is a vital task to assure it’s main purpose: to convert as large
a fraction as possible of the dynamic pressure into static pressure. The straight way to prevent the boundary layer de-
tachment is to design a diffuser with a small divergence angle but, in order to achieve a high static pressure, the size of
the diffuser axial length would be necessarily large, whichis a handicap. However, numerical results presented in this
work, strongly suggest that constructive details, in the inlet and outlet of the diffuser, are capable of increasing locally the
turbulent intensity and may act decreasing or, at least, preventing the boundary layer detachment inside the diffuser.If
experimental results confirm what is observed in the numerical simulation, this feature of turbulent flows in plane diffusers
could be studied in a broader way, with the goal of normalizing very cheap and simple constructive procedures, capable
to difficult or, at a limitrophe circumstance, to avoid the boundary layer detachment inside diffusers.

The constructive detail mentioned is the curvature in the inlet and on the outlet of the diffuser, as detailed by Buice
and Eaton (1995). This work observed numerically that when the transition between the entering channel and the diffuser
is conducted by a smooth curvature, the boundary layer detachment is increased for small divergence angles. When the
transition is done directly, without considering a smooth curvature, the boundary layer detachment is decreased. The
reasons for this behavior will be discussed still.

This work does a numerical analysis about the influence of thegeometry details in the dynamic field of a turbulent
flow of air, inside an asymmetric straight-walled diffuser with an divergence angle of9.97 degrees. The numerical results
of this work are confronted with the experimental data obtained by Buice and Eaton (1995).

The solver used, named Turbo2D, is a research Fortran numerical code, that has been continuously developed by
members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering Department of the University
of Brasília, in the last twenty years. This solver is based onthe adoption of the finite elements technique, under the
formulation of weighted residuals proposed by Galerkin, adopting in the spatial discretization of the calculation domain
the triangular elements of the type P1 and P1-isoP2, as proposed by Brison, Buffat, Jeandel and Serres (1985). In the P1
mesh only the pressure field is calculated while all the othervariables are calculated in the P1-isoP2 mesh.

Considering the uncertainties normally existing about theinitial conditions of the flow to be simulated, it is adopted
the temporal integration of the governing equations system. In the temporal integration process, at the beginning of the
flow, the initial state corresponds to an arbitrary value of all dependent variables and the final state is attained when
are concluded the temporal variations of the velocity, pressure, density and other turbulent variables. The temporal
discretization of the of the governing equations system, implemented by the algorithm of Brun (1988), uses sequential
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semi-implicit finite differences, with truncation error oforder0(∆t) and allows a linear handling of the equation system,
at each time step.

The resolution of the coupled equations of continuity and momentum is done by a variant of Uzawa’s algorithm
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress tensor
is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications introduced by Launder
and Spalding (1974).

In the program Turbo2D, the boundary conditions of velocitycan be calculated by four velocity laws of the wall. The
velocity laws of the wall used in this work are: the classicallogarithm law, and the laws of Mellor (1966), Nakayama
and Koyama (1984), and Cruz and Silva Freire (1998). The numerical instability resultant of the explicit calculation of
the boundary conditions of velocity, through the evolutivetemporal process, is controlled by the algorithm proposed by
Fontoura Rodrigues (1990). The numerical oscillations induced by the Galerkin formulation, resulting of the centered
discretization applied to a parabolic phenomenon, that is the modeled flow, are cushioned by the technique of balanced
dissipation, proposed by Huges and Brooks (1979) and Kelly,Nakazawa and Zienkiewicz (1976) with the numerical
algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo2D,
the results obtained numerically are compared to the experimental data of Buice and Eaton (1995).

2. Governing equations

The turbulent one phase flow analyzed in the present work is homogeneous, at low Mach number, and the gravitational
force is small compared to advective effects. Considering the procedures shown by Soares and Fontoura Rodrigues (2004),
with pertinent adaptations for isothermal flows, the conservation equations of mass and momentum, which des-cribe the
phenomena, are respectively represented, in Einstein’s notation, by the dimensionless relations:
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whereρ is the fluid density, t represents time,xi a cartesian coordinate,ui is thei
th velocity component, p is the thermo-

dynamic pressure andRe is the Reynolds number.

2.1 The turbulence model

The adopted methodology is a transformation of the system ofinstantaneous dimensionless governing equations into
a system of mean equations, obtained using a statistical treatment, resultant from the Reynolds averaging.

The closure of the mean equations is based on Boussinesq’s (1877) hypothesis of eddy viscosity. For the velocity
fluctuation correlation tensor, the Reynolds Stress Tensor, takes the form:
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whereνt is the eddy viscosity,κ is the turbulent kinetic energy,δij is the delta of Kronecker operator and the over-bars
indicate averaged variables. The form adopted in this work to express the eddy viscosityνt, as a function of the turbulent
kinetic energyκ and its dissipation rateε, is using the Prandtl - Kolmogorov relation:

νt = Cµ
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and (4)

whereCµ is a constant of value 0.09. With the adoption of relation (4), theκ − ε turbulence model relation imposes the
necessity of two supplementary transport equations to the system of mean equations, destined to evaluation of variables
κ andε. Once defined the closure of the mean equations system, the direction proposed by Brun (1988) produces the
following system of equations:
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p∗ = p̄ +
2

3
ρκ , (10)

and the constants of the model are given:

Cµ = 0.09 , Cε1 = 1.44 , Cε2 = 1.92 , σκ = 1 , σε = 1.3 . (11)

2.2 NEAR WALL TREATMENT

Theκ − ε turbulence model is incapable of properly representing thelaminar sub-layer and the transition regions of
the turbulent boundary layer. To solve this inconvenience,the solution adopted in this work are the laws of the wall for
velocity employment, capable of properly representing theflow in the inner region of the turbulent boundary layer.

There are four velocity laws of the wall implemented on Turbo2D. The laws used in this simulation are shown bellow,
except for the classical log law, that further explanationsare unnecessary.

2.2.1 Velocity law of the wall of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbulent boundary layer, considering the pressure gradient term
for integration, this wall function is a primary approach toflows that suffer influence of adverse pressure gradients. Its
equations are, respectively, for the laminar and turbulentregion
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where the asterisk upper-index indicates dimensionless quantities of velocityu∗, pressure gradientp∗ and distance to the
wall y∗, as functions of scaling parameters to the near wall region,K is the Von Karman constant, andξp∗ is Mellor’s
integration constant, function of the near-wall dimensionless pressure gradient, determined in his work of 1966.

The intersection of both regions is considered to be the sameas the log law expressions, withy∗ = 11, 64. The
relations between the dimensionless near wall properties and the friction velocityuf are:
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The friction velocity is calculated by the relation:
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In equation (13) the termξp∗ is a value obtained from the integration process proposed byMellor (1966) and is a func-
tion of the dimensionless pressure gradient. Its values areobtained through interpolation of those obtained experimentally
by Mellor, shown in Tab. 1.

Table 1. Mellor’s integration constant (1966)

p∗ −0.01 0.00 0.02 0.05 0.10 0.20 0.25 0.33 0.50 1.00 2.00 10.00
ξp∗ 4.92 4.90 4.94 5.06 5.26 5.63 5.78 6.03 6.44 7.34 8.49 12.13
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2.2.2 Velocity law of the wall of Nakayama and Koyama (1984)

In their work, Nakayama and Koyama (1984) proposed a derivation of the mean turbulent kinetic energy equation, that
resulted in an expression to evaluate the velocity near solid boundaries. Using experimental results and those obtained by
Strattford (1959), the derived equation is
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whereK∗ is the expression for the Von Karman constant modified by the presence of adverse pressure gradients,τ∗ is a
dimensionless shear stress,C = 5.445 is the log-law constant and t,y∗

s andts, a value of t at positiony∗

s, are parameters
of the function.

2.2.3 Velocity law of the wall of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer flowunder adverse pressure gradients, Cruz and Silva Freire
(1998) derived an expression for the velocity. The solutionof the asymptotic approach is
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where the sub-indexw indicates the properties at the wall, K is the Von Karman constant,Lc is a length scale parameter
anduf is the friction velocity.

The proposed equation for the velocity, equation (18), has abehavior similar to the log law far from the separation and
retachment points, but close to the separation point, it gradually tends to Stratford’s equation (1959).

3. NUMERICAL METHODOLOGY

The numerical solution of a turbulent wall flow, with the heigh Reynoldsκ − ε turbulence model used in this work,
has as main difficulties the coupling between all equations;the non-linear behavior resulting of the simultaneous action
of advective and eddy viscosity terms; the explicit calculations of boundary conditions in the solid boundary and the
methodology of use the continuity equation as a manner to link the coupled fields of velocity and pressure.

The solution proposed in the present work suggests a temporal discretization of the system of governing equations
with a sequential semi-implicit finite difference algorithm proposed by Brun (1988) and a spatial discretization using
finite elements of the type P1-isoP2. The temporal and spatial discretization implemented in Turbo 2D is presented in
Fontoura Rodrigues (1990).

3.1 Numerical solver algorithm

The system of governing equations is spatially discretizedusing a first order approximation to the temporal derivative,
obtained with a sequential semi-implicit finite differencealgorithm, with first order truncating error, which allows a
complete linearization of all equations at each time step. The algorithm proposed by Brun (1988) starts the calculation
with a known field at an instantn∆t, calculating the momentum, the pressure, the temperature,the density, the turbulence
kinetic energy and its dissipation rate at an instant(n + 1)∆t, wheren is a integer number and∆t is a time interval, by
means of a sequence of calculations divided in three stages.

On the first stage, the boundary conditions at an instant(n + 1)∆t for the velocity field are obtained from a chosen
law of the wall, using values from instantn∆t. On the second stage, the fields of momentum and pressure are calculated
at instant(n + 1)∆t, using a variation of Uzawa’s minimum residuals algorithm proposed by Buffat (1981), with the
coupled system of equations:
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On the third and last stage, all other variables are solved atinstant(n + 1)∆t:
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with the production termΠ and the modified pressurēp∗ given by:
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At last, the turbulent Reynolds number is updated with the newest values:
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and then return to the first step, until the required precision is reached.
As the boundary conditions are calculated explicitly, based on values of the instantn∆t to determine the conditions

for the instant(n + 1)∆t, a numerical instability inevitably appears. To eliminatethis characteristic of the use of laws
of the wall, in applications where temporal variations are considered, the minimization residuals technique proposedby
Fontoura Rodrigues (1990), that adopts an iterative calculation sequence based on the minimization of the resulting error
on the evaluation of the friction velocity, defined for a determined iterationi at an instant(n + 1)∆t, as:
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where the double bars indicate the absolute values of the vectors, the value of(u2
f )∗ is obtained with the laws of the wall

relation, with values of iterationi at instant(n + 1)∆t, and the value of(u2
f )n+1

i is obtained with a numerical relation of
recurrence, from the error minimization algorithm.

4. RESULTS

The calculation domain consists in an asymmetric plane diffuser with an opening angle of9.97o. In the inlet experi-
mental profiles of velocity, turbulent kinetic energy and its rate of dissipation are imposed. In the walls the boundary
velocity condition is calculated with the employment of laws of the wall. In this work it was setted a non dimensional
distance from the wall ofy+

max = 2.0 for all the laws of the wall tested, this value was calibratedby trial and error based
on the numerical estability, wich is the usual procedure forthe use of these laws of the wall. In the outlet is imposed a
null pressure condition. Figure 1 shows the calculation domain with the boundary conditions employed in this test case.

Figure 1. Calculation domain and boundary conditions- Buice and Eaton (1995) test case
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The meshes used to execute the simulations are shown in Fig. 2.
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Figure 2. P1 mesh (a) and P1-isoP2 mesh (b) - Buice and Eaton (1995) test case

It is possible to notice a higher refinement level in the near wall regions. Figure 2 b indicates that the P1-isoP2 mesh
contains 27,104 elements. This is a considerable fine mesh for this kind of phenomenon. Figure 3 shows the difference
in the inlet detail considered in this work. This means that all the simulations were executed considering a sharp and a
smooth transition in the inlet and in the outlet of the diffuser.
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Figure 3. Sharp transition (a) and smooth transition (b) - Buice and Eaton (1995) test case

The velocity profiles obtained numerically with the use of the four laws of the wall considered were taken in eight
points, illustrated in Fig. 4.
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Figure 4. Points where the profiles were taken - Buice and Eaton (1995) test case

Figure 5 shows the profiles taken in points A,B,C and D.
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Figure 5. Velocity profiles in points A (a), B (b) C (c) and D (d)- Buice and Eaton (1995) test case

It is possible to observe that the classic log law of the wall reproduces better the dynamic behavior of the flow before
de detachment point, in profiles A and B. Point C represents the detachment point. From this point until the end of the test
section, the three laws of the wall that consider the existing pressure gradient action are those that better reproducesthe
flow behavior, with little difference between then. Figure 6illustrates the velocity profiles taken from point E to pointH.
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It is importante to notice that at the last measurement section, the numerical profiles obtained with the use of the laws of
the wall of Mellor (1966), Nakayama and Koyama (1984) and Cruz e Silva Freire (1998) generates a very good agreement
between numerical and experimental results.
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Figure 6. Velocity profiles in points E (a), F (b) G (c) and H (d)- Buice and Eaton (1995) test case

It is interesting to notice that in this case the log law is notcapable to predict the boundary layer detachment. This
behavior is different from the one observed in geometries where the detachment is induced by a sudden change in the
geometry, such as in a channel with square ribs simulated by Gontijo and Fontoura Rodrigues (2007), or in the backward
facing step flow, as showed by Gontijo and Fontoura Rodrigues(2008).

The consideration or not, of the geometrical detail in the inlet and in the outlet of the diffuser, is not capable to produce
a great change in the velocity profiles, but they influence theaspect of the recirculation region. Figure 7 shows how the
geometry influences the aspect of the recirculation region when the flow field is calculated using the Mellor (1966) law of
the wall. This confrontation is done for the law of the wall ofKoyama and Nakayama (1984), Fig. 8, and for the law of
the wall of Cruz and Silva Freire (1998), Fig. 9.
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Figure 7. Smooth transition (a) and sudden change (b) - Mellor (1966) law - Buice and Eaton (1995) test case

X

Y

0 10 20 30
0

2

4

6

(a)

X

Y

0 10 20 30
0

2

4

6

(b)

Figure 8. Smooth transition (a) and sudden change (b) - Koyama and Nakayama (1984) law - Buice and Eaton (1995) test
case
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Figure 9. Smooth transition (a) and sudden change (b) - Cruz and Silva Freire (1998) law - Buice and Eaton (1995) test
case
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The behavior obtained with all laws of the wall is consistent. This means that, for this divergence angle, the sudden
change in the geometry acts like a micro vortex generator, that injects energy in the turbulent boundary layer and creates a
localized smaller recirculation region. This result is interesting because it shows a simple manner to minimize that waste
of energy spent in the recirculation region, just by not considering a smooth transition in the inlet and in the outlet of the
diffuser. Of course this behavior is justified by the small opening angle. If large opening angles were considered, the
sharp transition in the inlet and in the outlet would increase the size of the recirculation region.

5. CONCLUSIONS

This work does an analysis based on the use of laws of the wall capable to consider the existing pressure gradients in
the internal region of the turbulent boundary layer and it shows two interesting facts. The first of them is that the classic
log law used in most of the commercial packages that employs the high Reynoldsκ − ε model is uncapable to predict
the boundary layer detachment when it is caused by a smooth adverse pressure gradient imposed by the geometry. On the
other hand, the laws of Mellor (1966), Koyama and Nakayma (1984) and of Cruz and Silva Freire (1998), that consider the
influence of pressure gradients in the near wall region were capable to produce a behavior very closed to the experimental
measurements of Buice and Eaton (1995).

The numerical simulation of the asymmetric straight-walled diffuser, with an divergence angle of9.97o, discloses that
the non consideration of a smooth transition, in the inlet and in the outlet of the diffuser, is capable to induce the generation
of localized micro vortex that injects energy in the turbulent boundary layer, minimizing the size of the recirculation
region, in a behavior similar to the addition of a roughned wall.
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