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Abstract. The solution of eigenvalue problems in irregular geometries is a key feature towards the development of the
Generalized Integral Transform Technique for handling arbitrarily shaped domains. Although such solutions have been
attempted with success in previous studies, a coincident domain approach was always adopted. This limits the application
to problems defined within a class of irregular domains. In order to augment the number of irregular domains that can
be handled by integral transforms, an alternative technique is herein introduced. The method consists of tackling the
original eigenvalue problem using an auxiliary problem defined in a regular geometry that encloses the irregular domain.
This paper provides a formal solution using an enclosing domain solution for a general one-dimensional Sturm-Liouville
problem. Then, with the purpose of validating the methodology, test case results for a simple case whose exact solution is
known are computed and compared with exact values. The results show very good agreement, and demonstrate that the
convergence rate also depends on the number of significant digits used in the calculation.
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1. NOMENCLATURE

Ai,j coefficients matrix
Bi,j coefficients matrix
Di,j coefficients matrix
Si,j coefficients matrix
B, B∗ boundary condition operators
a, b boundary of original problem
d eigenvalue problem parameter
k parameter in diffusion term
N norm of eigenfunctions
w weight function of original eigenfunctions
w∗ weight function of auxiliary eigenfunctions

Greek Symbols
α∗, β∗ boundary condition parameters
α, β boundary condition parameters
δi,j Kronecker delta
Ψn original eigenfunctions
Ωi auxiliary eigenfunctions
µn eigenvalues of original problem
γi eigenvalues of auxiliary problem

2. INTRODUCTION

The analysis and solution of convection-diffusion, as well as other problems represented by partial differential sys-
tems, can involve a considerable computational effort, especially if nonlinearity and multidimensional effects are present.
Further difficulties arise if there are complexities in the geometries considered. In this context, different approaches have
been proposed, ranging from full numerical solutions using traditional discretization techniques to analytical methods, the
former being limited to simpler situations. Between these two extremes hybrid methodologies are available, combining
the flexibility of numerical solutions with the accuracy of analytical approaches. One such technique is the so-called Gen-
eralized Integral Transform (GITT) (Cotta, 1993, 1998; Cotta and Mikhailov, 1997). This technique is based on obtaining
solutions using orthogonal eigenfunction expansions. Nevertheless, if complex geometries are considered, a strategy for
handling domain irregularities becomes necessary. A common option for dealing with this problem was applied to prob-
lems involving heat and fluid flow within irregularly shaped channels, heat conduction in fins of arbitrary geometry as
well as problems with temperature dependent thermal conductivity (Aparecido and Cotta, 1990, 1992; Aparecido, Cotta
et al., 1989; Barbuto and Cotta, 1997; Cotta and Ramos, 1998; Guerrero, Quaresma et al., 2000). All these applications,
either of elliptic or parabolic mathematical nature, the domain irregularities are handled by adopting individual auxiliary
problems in each coordinate direction that maps the irregular domain boundaries exactly.

A different strategy involves employing multidimensional eigenvalue problems defined within the considered irregular
domain itself. This transfers the task of handling with complex geometries from the original PDE system to the associated
eigenvalue problem, as demonstrated in (Sphaier and Cotta, 2002). As expected, this approach involves the solution of a
multidimensional eigenvalue problem in an irregular geometry. The solution of eigenvalue problems in irregular domains
represents a challenging task, even for well established numerical methods, especially when higher order eigenfunctions
are needed, due to their highly oscillatory nature. Nevertheless, the solution to such a difficult eigenvalue problem can
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also be obtained using the GITT. As a matter of fact, a general methodology for solving multidimensional eigenvalue
problems via integral transforms in a class arbitrary geometries was proposed in (Sphaier and Cotta, 2000). This strategy
becomes particularly interesting for linear convection-diffusion problems, since direct analytical solutions can be obtained
once the solution to the multidimensional eigenproblem is accomplished. Although the first methodology can seem more
suitable for non-linear problems, if the physical nature of the problem require the calculation of eigenvalues defined within
arbitrarily shaped regions, an approach similar to the one developed in (Sphaier and Cotta, 2000) needs be applied.

The methodology presented in (Sphaier and Cotta, 2000) consists of using auxiliary eigenfunctions, defined within
a domain coinciding with the original irregular one to solve the problem. Although the auxiliary eigenfunctions are
defined within an irregular domain, they are constructed in a simple fashion, using one-dimensional eigenfunctions. This
coincident domain approach is capable of solving a class of geometries; however it cannot be applied to certain situations.
In order to circumvent this limitation, extending the solution of eigenvalue problems in arbitrary domains to a broader
class of geometries, an alternative approach is herein proposed. The idea behind this approach is to solve the eigenvalue
problem defined within the irregular domain by using an auxiliary problem defined within a regular domain that encloses
the original irregular boundaries. While this alternative technique is still in a preliminary stage, the purpose of this work
is to apply it within a one-dimensional framework, in order to verify its feasibility. Hence, a one-dimensional solution
methodology to a Sturm-Liouville problem is formally presented. Then a test-case problem of know exact solution is later
selected for illustrating the behavior of the proposed solution. The eigenvalues calculated with the proposed methodology
are compared to the exact ones, and very reasonable agreement is seen.

3. METHODOLOGY

3.1 Original and auxiliary eigenvalue problems

In order to demonstrate the proposed methodology a general one-dimensional Sturm-Liouville problem is considered:

d
dx

(
k(x)

dΨ
dx

)
+ (µ2 w(x) − d(x)) Ψ(x) = 0, for a ≤ x ≤ b, (1)

BΨ = 0, for x = a, (2)
BΨ = 0, for x = b, (3)

where the boundary condition operator B is defined as:

B ≡
(
α(x) + β(x) k(x)

d
dx

)
. (4)

It is know that this type of problem possesses the following orthogonality property:∫ b

a

w(x) Ψn(x) Ψm(x) dx = δn,mN(µn), (5)

in which Ψm and Ψn are eigenfunctions respectively corresponding to the eigenvalues µm and µn, δn,m is the Kronecker
delta and N(µn) is the norm, defined as:

N(µn) ≡
∫ b

a

w(x) Ψn(x)2 dx. (6)

Analytical solutions to such problem are straightforward in many cases, and they can be found on several sources.
Nevertheless, in this investigation, an alternate solution route, using an auxiliary set of orthogonal eigenfunctions is sought.
The auxiliary eigenfunctions, denoted as Ωi(x) = Ω(x; γi) are normalized according to the following orthonormality
relation:∫ 1

0

w∗(x) Ωi(x) Ωj(x) dx = δi,j , (7)

where it is assumed that 0 ≤ a < b ≤ 1, such that the domain for the original problem is enclosed by the auxiliary one.

3.2 Transform pair

The goal of the current methodology is to use the basis provided by the auxiliary eigenfunctions to write an expansion
for the original eigenfuntions in the form:

Ψ(x) =
∞∑

i=1

Ψ̄i Ωi(x), for a ≤ x ≤ b . (8)
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This expression is termed the inversion formula. Based on the previous expansion and the orthogonality of the auxiliary
eigenfunctions, the following integral transform formula is obtained:

Ψ̄i =
∫ 1

0

w∗(x) Ψ(x) Ωi(x) dx . (9)

This transform is different than traditional integral transforms, in which the transformation is performed within the same
domain (termed coincident domain transforms). In the form provided by equation (9) the transformation is termed a
enclosing domain transform.

3.3 Transformation of original problem

The original problem is transformed integrating within its original domain:∫ b

a

d
dx

(
k(x)

dΨ
dx

)
Ωi(x) dx + µ2

∫ b

a

w(x) Ψ(x) Ωi(x) dx −
∫ b

a

d(x) Ψ(x)Ωi(x) dx = 0 , (10)

The diffusive term can be transformed, as usual, using Green’s second formula:∫ b

a

d
dx

(
k(x)

dΨ
dx

)
Ωi(x) dx =

∫ b

a

d
dx

(
k(x)

dΩi

dx

)
Ψ(x) dx +

[
k(x) (Ψ′Ωi −Ψ Ω′i)

]∣∣x=b

x=a
. (11)

Simplifications can be performed on the boundary term (last on right) using the boundary conditions from the original
problem; nevertheless the information about the boundary conditions from the auxiliary problem cannot be used since
these are defined in another boundary (x = 0 and x = 1). The second term on the right side of the above equation can be
simplified with information from the chosen auxiliary problem; however to keep the analysis in a general form, particular
simplifications will be avoided at this point.

Substituting the inversion formula in equations (11) and (10) yields:

∞∑
i=1

(∫ b

a

d
dx

(
k

dΩj

dx

)
Ωi dx + µ2

∫ b

a

wΩi Ωj dx −
∫ b

a

dΩi Ωj dx

)
Ψ̄j = 0, (12)

∞∑
i=1

(∫ b

a

d
dx

(
k

dΩj

dx

)
Ωi dx −

∫ b

a

d
dx

(
k

dΩi

dx

)
Ωj dx

)
Ψ̄j =

∞∑
i=1

Ψ̄j

[
k (Ω′j Ωi − Ωj Ω′i)

]∣∣x=b

x=a
(13)

Then, introducing the following coefficients:

Ai,j =
∫ b

a

d
dx

(
k

dΩj

dx

)
Ωi dx, Bi,j =

∫ b

a

wΩi Ωj dx, (14)

Di,j =
∫ b

a

dΩi Ωj dx, Si,j =
[
k (Ω′j Ωi − Ωj Ω′i)

]∣∣x=b

x=a
, (15)

the previous equations can be written as:

∞∑
i=1

(
Ai,j + µ2Bi,j − Di,j

)
Ψ̄j = 0, (16)

∞∑
i=1

(Ai,j −Aj,i) Ψ̄j =
∞∑

i=1

Si,j Ψ̄j . (17)

In matrix/vector form these are equivalent to:(
A + µ2 B − D

)
Ψ̄ = 0, (18)(

A−AT − S
)
Ψ̄ = 0. (19)

However, the second equations implies in:

A = AT + S, (20)

which allows equation (21) to be written as:(
AT + S + µ2 B −D

)
Ψ̄ = 0. (21)
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This systems represents an algebraic eigenvalue problem, which can be used to determine the original eigenvalues µ
and transformed eigenfunctions (given by the eigenvectors of the algebraic problem). Defining the matrix below

M = B−1
(
AT + S −D

)
, (22)

system (21) can be rewritten in the traditional form:(
M − µ2 I

)
Ψ̄ = 0. (23)

Equation (23) allows a direct calculation of the eigenvalues µn. They can be evaluated as the square root of eigenvalues
of the tensor M . The eigenfunctions Ψn(x) are determined using the inversion formula (8), where for each eigenvalue µ,
the corresponding eigenfunction is reconstructed using the components of the associated eigenvector Ψ̄.

3.3.1 Simplifications in the boundary matrix S

The form of the boundary matrix (S) in the form previously presented did not take into account information regarding
the boundary conditions of the original problem. If such information is considered the coefficients of this matrix can be
simplified. Employing boundary conditions (2,3) the following relations can be obtained:

[k (Ψ′Ωi − Ψ Ω′i)]|x=b
x=a = −

[
kΨ

(
α

β k
Ωi + Ω′i

)]∣∣∣∣x=b

x=a

, (24)

[k(Ψ′ Ωi − Ψ Ω′i)]|x=b
x=a =

[
kΨ′

(
Ωi +

β k

α
Ω′i

)]∣∣∣∣x=b

x=a

, (25)

where the first formula should be applied for α = 0 whereas the second one should be used for β = 0. However, a general
expression can be obtained combining both expressions:

[k(Ψ′ Ωi − Ψ Ω′i)]|x=b
x=a =

[
k (Ψ′ −Ψ) (αΩi + β kΩ′i)

α + β k

]∣∣∣∣x=b

x=a

, (26)

where it should be noted that, different than encountered in transforms within coincident domains, the boundary conditions
for the auxiliary eigenvalue problem are not substituted into the boundary term resulting from Green’s formula.

Using the inversion formula yields:

∞∑
i=1

Ψ̄j

[
k (Ω′j Ωi − Ωj Ω′i)

]∣∣x=b

x=a
=
∞∑

i=1

Ψ̄j

[
k (Ω′j − Ωj) (αΩi + β kΩ′i)

α + β k

]∣∣∣∣x=b

x=a

, (27)

showing that the coefficients Si,j can be given by:

Si,j =
[
k (Ω′j − Ωj) (αΩi + β kΩ′i)

α + β k

]∣∣∣∣x=b

x=a

, (28)

noting that for cases with α = 0 or β = 0 (Dirichlet or Neumann boundary conditions), alternate expressions can be
employed:

Si,j =
(
kΩ′j

(
Ωi +

β k

α
Ω′i

))∣∣∣∣x=b

x=a

, for α 6= 0 , (29)

Si,j = −
(
kΩj

(
α

β k
Ωi + Ω′i

))∣∣∣∣x=b

x=a

, for β 6= 0 . (30)

4. TEST PROBLEM

In order to test the current methodology, a simplified version of the original problem (Helmholtz Equation) with
Dirichlet boundary conditions is selected:

Ψ′′(x) + µ2 Ψ(x) = 0, for a ≤ x ≤ b, (31)
Ψ = 0, for x = a, (32)
Ψ = 0, for x = b, (33)
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This problem has well known analytical solutions in the form

Ψn(x) = sin(µn (x− a)), with µn =
nπ

b− a
. (34)

An auxiliary eigenvalue problem in a form similar to the original one is chosen:

Ω′′(x) + γ2 Ω(x) = 0, for 0 ≤ x ≤ 1, (35)
B∗ Ω = 0, for x = 0, (36)
B∗ Ω = 0, for x = 1, (37)

where the operator B∗ is defined as:

B∗ ≡
(
α∗(x) + β∗(x) k∗(x)

d
dx

)
. (38)

However, different combination of the boundary conditions parameters are analyzed for comparison purposes. Regardless
of the boundary conditions, for the selected test case, some coefficients are simplified, yielding:

Bi,j =
∫ b

a

Ωj Ωi dx, Ai,j = −γ2
j Bi,j , Di,j = 0, Si,j =

[
(Ω′j − Ωj)Ωi

]x=b

x=a
. (39)

The different boundary conditions and the resulting auxiliary eigenfunction, for the analyzed cases are described below:

• Case 1: Ω(0) = Ω(1) = 0.

Ωi(x) =
√

2 sin(γi x), γi = nπ, n = 1, 2, . . . (40)

• Case 2: Ω′(0) = Ω(1) = 0.

Ωi(x) =
√

2 cos(γi x), γi = (n− 1/2)π, n = 1, 2, . . . (41)

• Case 3: Ω(0) = Ω′(1) = 0.

Ωi(x) =
√

2 sin(γi x), γi = (n− 1/2)π, n = 1, 2, . . . (42)

• Case 4: Ω′(0) = Ω′(1) = 0.

Ωi(x) =
√

2 cos(γi x), γi = nπ, n = 1, 2, . . . (43)
Ωi(x) = 1, γi = 0, (for n = 0) (44)

5. RESULTS AND DISCUSSION

The solutions given in the previous sections were implemented in the Mathematica system (Wolfram, 2003) and are
now presented. The first ten eigenvalues are calculated and compared to the exact solution, obtained from equations
(34), for different truncation orders (imax) and different values of working precision (WP). The working precision is the
number of decimal digits used in the computations. Table 1 and 2 present the results calculated for cases 1, 2, 3 and 4,
using a = 0.25 and b = 0.75. As can be seen, the first eigenvalues converge faster than the last ones. It is also seen
that as the truncation order is increased, the required working precision (WP) is also increased. Hence, one can observe a
convergence with both truncation order and working precision. Next, tables 3 and 4 present the calculated results for the
same four cases, but setting a = 0.1 and b = 0.9. Analyzing these results one again sees that higher truncation orders
are required for the convergence of larger eigenvalues, and a higher working precision is needed as the truncation order is
increased.

Comparing the convergence rate resulting from the four different boundary condition cases, one notices that all cases
present the same behavior with respect to the truncation order. However, different values of working precision are required
for each case. For a = 0.25 and b = 0.75, case 4 presents the worse convergence rate with WP, followed by case 1. Cases
2 and 3 present similar convergence rates with WP, with case 2 having the best overall performance. Repeating this
analysis for a = 0.1 and b = 0.9, one sees less disparity between all cases; however, it can be seen that case 4 is again the
worse option. In addition, comparing the results from the two different domains (given by the values of a and b) it is seen
that the domain with a = 0.25 and b = 0.75 needs higher values of working precision for convergence. This suggests
that using an enclosing boundary closer to the original boundary might lead to a better convergence. Nevertheless, the
convergence rate with truncation order is the same for the two different analyzed domains.
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6. CONCLUSIONS

This paper presented a different approach for solving problems in irregular geometries, consisting of employing a
basis of eigenfunctions defined within a domain that encloses the original region. At the current stage of development, a
formal solution of one dimensional eigenvalue problems using an auxiliary problem defined within an enclosing region
was presented. The methodology was tested on a simple problem with known exact solution for two different domains,
and four different types of auxiliary eigenfunctions were employed. The calculated eigenvalues were compared with the
known exact values and a convergence analysis was performed. It was seen that the convergence rate depends not only
the truncation order, but also on the number of decimal places used in the computations (denoted working precision). The
results showed the natural tendency in which the lager eigenvalues require larger truncation orders. All tested cases, for
both domains, presented the same convergence behavior with truncation order. Nonetheless, a very different behavior was
noticed when the working precision (WP) required for each case was analyzed. The domain in which the boundaries were
closer to the the enclosing domain presented a better convergence rate with the WP. Also, the auxiliary eigenfunctions
based on mixed boundary condition types (Dirichlet at one end and Neumann at the other) presented better results.

The present methodology is a first step towards the development of an integral transform solution strategy using
eigenfunction expansions based on enclosing domains. The results obtained in this work indicates that the method could
be applied to multidimensional problems as well. Hence, future developments will be aimed at expanding the methodology
to handle 2D and 3D problems. In addition, the solution of general convection-diffusion problems using eigenfunction
bases in enclosing domains shall also be performed.
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Table 1. Eigenvalues convergence for case 1 & 2 with a = 0.25 and b = 0.75.
imax WP µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

case 1 with a = 0.25 and b = 0.75.
10 10 45.1740 157.914 430.263 631.655 791.499 1428.35 1870.17 4131.51 -10214.8 -17395.1
10 15 39.4785 157.914 355.307 631.655 987.775 1427.89 2838.00 4131.72 -11282.8 -17410.3
10 20 39.4785 157.914 355.307 631.655 987.775 1427.89 2838.00 4131.72 -11282.8 -17410.3
15 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 15 146.278 157.914 399.829 631.655 752.438 1177.78 1421.22 1558.95 2217.67 2527.55
15 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2527.36 3201.50 4257.65
20 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20 15 157.914 631.655 1421.22 2526.62 3947.84 −3.7×106 −3.2×107 −7.8×107 1.4×108 4.4×108

20 20 39.4784 157.914 355.306 526.473 631.655 986.961 1421.22 1905.14 1934.44 2526.62
25 15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25 20 21.0530 157.914 171.012 631.655 794.453 1278.33 1421.22 1752.42 complex complex
25 25 15.5066 141.347 157.914 592.704 631.655 1103.34 1421.22 1622.11 2200.33 2526.62
25 30 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
30 20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30 25 38.3729 157.914 357.132 631.655 996.811 1218.13 1421.22 complex complex 1934.86
30 30 38.7866 157.914 354.758 631.655 989.977 1216.39 1421.22 complex complex 1935.08
30 35 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
35 25 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
35 30 15.6147 140.236 157.914 406.538 631.655 1276.61 1421.22 complex complex 1847.84
35 35 14.2651 128.314 157.914 357.453 631.655 991.396 1421.22 1568.08 2164.52 2526.62
35 40 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
40 30 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 35 16.3457 138.933 157.914 398.654 631.655 781.245 1421.22 1846.90 2522.28 2526.62
40 40 13.8189 124.098 157.914 343.365 631.655 670.846 1421.22 1523.94 2147.03 2526.62
40 45 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84

case 2 with a = 0.25 and b = 0.75.
10 10 39.4785 157.914 355.306 631.656 988.289 1445.59 2847.55 4591.13 -11188.2 -20924.4
10 15 39.4785 157.914 355.306 631.656 988.289 1445.60 2847.55 4591.12 -11188.2 -20924.4
10 20 39.4785 157.914 355.306 631.656 988.289 1445.60 2847.55 4591.12 -11188.2 -20924.4
15 10 41.0026 158.513 362.807 531.261 693.264 962.556 1268.27 1521.44 1875.95 2582.95
15 15 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2527.64 3211.02 4265.45
15 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2527.64 3211.02 4265.45
20 10 complex complex 384.495 complex complex complex complex 1284.07 2244.81 2464.15
20 15 37.0887 157.308 355.472 633.063 986.791 1422.47 1936.07 2509.97 3195.94 complex
20 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
25 10 −7.6×107 −7.6×107 3.0×108 3.1×108 6.3×109 6.3×109 −6.8×109 −6.9×109 4.7×1010 4.8×1010

25 15 complex complex 364.694 complex complex complex complex 1159.25 complex complex
25 20 33.5367 161.357 369.527 485.432 673.386 985.955 1292.48 1531.65 1908.99 2327.62
25 25 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
30 10 1514.11 1522.65 2194.61 2209.97 -2308.98 2369.86 2518.30 2562.65 2589.53 2793.35
30 15 91.3830 181.682 344.387 564.878 724.503 1040.72 1329.26 1553.06 2123.19 2602.45
30 20 85.2149 170.573 310.121 524.265 690.203 966.537 1293.09 1533.70 1840.69 2306.27
30 25 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
35 15 348.804 386.131 421.961 1012.28 1087.32 1097.32 1194.50 1893.50 2074.18 2098.06
35 20 complex complex 340.455 complex complex complex complex 1094.50 complex complex
35 25 33.4499 160.347 378.815 449.241 663.243 993.985 1269.98 1514.56 1901.3 2365.77
35 30 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
40 15 118.843 224.371 -248.138 277.972 668.842 complex complex complex complex complex
40 20 89.5126 173.528 345.949 567.996 736.085 1070.28 -1161.77 1375.49 1618.77 2080.00
40 25 83.3932 168.375 303.568 516.647 683.333 955.221 1285.02 1527.76 1933.17 2365.58
40 30 39.3985 157.840 355.435 631.716 986.934 1421.23 1934.49 2526.63 3197.77 3947.93
40 35 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
exact 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
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Table 2. Eigenvalues convergence for cases 3 & 4 with a = 0.25 and b = 0.75.
imax WP µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

case 3 with a = 0.25 and b = 0.75.
10 10 39.4785 157.914 355.306 631.656 988.286 1445.67 2843.31 4598.02 -11379.6 -20672.9
10 15 39.4785 157.914 355.306 631.656 988.286 1445.67 2843.31 4598.01 -11379.6 -20672.9
10 20 39.4785 157.914 355.306 631.656 988.286 1445.67 2843.31 4598.01 -11379.6 -20672.9
15 10 38.6644 160.086 362.555 529.058 694.100 962.579 1267.03 1526.430 1858.45 2617.51
15 15 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2527.640 3211.03 4265.22
15 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2527.640 3211.03 4265.22
20 10 89.5080 174.641 323.034 536.539 701.244 988.377 1302.31 1483.40 1962.77 2368.9
20 15 36.6261 158.314 354.733 631.013 986.346 1421.08 1931.47 2513.25 3218.03 complex
20 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
25 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25 15 complex complex 368.849 complex complex complex complex 1195.53 complex complex
25 20 33.5397 161.354 369.529 485.441 673.379 985.965 1292.49 1531.65 1909.00 2327.64
25 25 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
30 10 596.455 1681.39 1714.96 2043.99 2140.39 2284.66 2481.09 2577.54 2585.42 2717.59
30 15 94.0018 178.790 344.758 563.233 723.504 1040.21 1327.29 1551.82 2077.80 2125.26
30 20 85.2178 170.571 310.121 524.270 690.199 966.537 1293.09 1533.69 1840.65 2306.30
30 25 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
35 15 1599.09 1796.17 1833.65 2185.00 3054.22 3082.59 3287.68 3331.72 3374.68 3504.97
35 20 complex complex 320.479 complex complex complex complex 1156.36 complex complex
35 25 33.4512 160.346 378.814 449.246 663.240 993.988 1269.99 1514.55 1901.31 2365.77
35 30 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
40 15 -113.927 224.534 245.019 complex complex complex complex complex complex 1794.55
40 20 91.6020 178.651 341.830 576.829 736.631 1075.99 1375.99 -1503.22 1608.44 2079.31
40 25 83.3945 168.375 303.568 516.650 683.330 955.223 1285.02 1527.76 1933.18 2365.58
40 30 39.4768 157.919 355.297 631.665 986.953 1421.22 1934.45 2526.61 3197.76 3947.83
40 35 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
40 40 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84

case 4 with a = 0.25 and b = 0.75.
10 10 39.4784 157.914 355.306 462.612 631.656 1454.72 4693.00 7079.47 -17260.3 -20874.3
10 15 39.4784 157.914 355.306 631.655 991.157 1438.79 3151.59 4587.22 -13811.2 -20802.4
10 20 39.4784 157.914 355.306 631.655 991.157 1438.79 3151.58 4587.22 -13811.2 -20802.4
15 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 15 39.4784 157.929 355.306 579.800 631.673 986.960 1364.18 1421.18 1934.44 2546.74
15 20 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2529.18 3206.93 4382.92
20 15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20 20 39.4784 54.4207 355.306 440.617 780.577 986.960 1187.76 1597.77 1934.44 2213.75
20 25 39.4784 161.282 355.306 631.343 986.960 1419.57 1934.44 2531.11 3197.75 3981.01
20 30 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
25 20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25 25 39.4784 228.040 355.306 523.084 913.851 986.960 1314.41 1702.49 1934.44 2771.26
25 30 39.4784 181.361 355.306 431.917 767.766 986.960 1179.77 1663.21 1934.44 2164.30
25 35 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
30 25 39.4784 complex complex 355.306 -846.205 857.793 986.960 1239.04 1691.64 complex
30 30 39.4784 58.6220 228.907 355.306 843.555 986.960 1235.91 complex complex 1682.74
30 35 39.4784 50.2357 200.245 355.306 755.221 986.960 1170.42 1655.58 1934.44 2041.51
30 40 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
35 30 39.4784 162.407 -294.321 355.306 complex complex complex complex 986.960 1508.39
35 35 39.4784 57.6807 230.039 355.306 518.566 986.960 1287.03 1742.94 complex complex
35 40 39.4784 49.1781 195.608 355.306 436.430 986.960 1164.96 1653.63 1934.44 2214.51
35 45 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
40 35 39.4784 154.071 355.306 629.829 717.867 986.960 1420.60 complex complex 1761.45
40 40 39.4784 158.292 355.306 631.055 717.213 986.960 1430.17 1784.95 1934.44 2527.32
40 45 39.4784 157.914 355.306 488.246 631.655 986.960 1353.18 1421.22 1934.44 2510.83
40 50 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
exact 39.4784 157.914 355.306 631.655 986.960 1421.22 1934.44 2526.62 3197.75 3947.84
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Table 3. Eigenvalues convergence for cases 1 & 2 with a = 0.1 and b = 0.9.
imax WP µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

case 1 with a = 0.1 and b = 0.9.
10 10 18.5866 64.3669 -89.5586 151.764 252.976 399.137 -400.153 560.301 760.649 986.96
10 15 18.5866 64.3669 -89.5586 151.764 252.976 399.137 -400.153 560.301 760.649 986.96
10 20 18.5866 64.3669 -89.5586 151.764 252.976 399.137 -400.153 560.301 760.649 986.96
15 10 15.4371 61.7999 138.904 247.054 385.702 555.440 755.699 986.960 1249.28 1544.84
15 15 15.4371 61.7999 138.904 247.054 385.702 555.440 755.699 986.960 1249.28 1544.84
15 20 15.4371 61.7999 138.904 247.054 385.702 555.440 755.699 986.960 1249.28 1544.84
20 10 15.4224 61.6873 138.799 246.746 385.543 555.170 755.645 986.960 1249.13 1542.15
20 15 15.4224 61.6873 138.799 246.746 385.543 555.170 755.645 986.960 1249.13 1542.15
20 20 15.4224 61.6873 138.799 246.746 385.543 555.170 755.645 986.960 1249.13 1542.15
25 10 15.4811 61.6795 138.234 246.739 385.414 555.175 755.632 986.960 1249.1 1542.12
25 15 15.4213 61.6852 138.791 246.741 385.532 555.166 755.642 986.960 1249.12 1542.13
25 20 15.4213 61.6852 138.791 246.741 385.532 555.166 755.642 986.960 1249.12 1542.13
30 10 40.4698 113.673 204.035 407.534 728.753 732.376 986.960 1049.71 1168.44 1861.93
30 15 15.4213 61.6851 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
30 20 15.4213 61.6851 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 10 986.960 1172.81 1639.92 1902.37 2091.16 2789.95 3078.92 3264.16 3304.89 3454.66
35 15 15.4213 61.6851 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 20 15.4213 61.6851 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
40 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 15 12.6519 61.6856 119.455 246.739 555.167 577.725 964.269 986.960 1442.37 1542.13
40 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13

case 2 with a = 0.1 and b = 0.9.
10 10 17.4998 -63.6883 66.5607 146.397 254.781 392.374 563.037 759.556 1094.27 -2448.56
10 15 17.4998 -63.6883 66.5607 146.397 254.781 392.374 563.037 759.556 1094.27 -2448.56
10 20 17.4998 -63.6883 66.5607 146.397 254.781 392.374 563.037 759.556 1094.27 -2448.56
15 10 15.4364 61.7466 138.902 246.900 385.717 555.290 755.761 987.037 1249.33 1544.59
15 15 15.4364 61.7466 138.902 246.900 385.717 555.290 755.761 987.037 1249.33 1544.59
15 20 15.4364 61.7466 138.902 246.900 385.717 555.290 755.761 987.037 1249.33 1544.59
20 10 15.4219 61.6871 138.795 246.746 385.538 555.170 755.642 986.962 1249.13 1542.14
20 15 15.4219 61.6871 138.796 246.746 385.537 555.170 755.643 986.961 1249.13 1542.14
20 20 15.4219 61.6871 138.796 246.746 385.537 555.170 755.643 986.961 1249.13 1542.14
25 10 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
25 15 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
25 20 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
30 10 15.4211 61.6850 138.791 246.740 385.534 555.169 755.653 986.954 1249.11 1542.13
30 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
30 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 10 50.4849 108.668 212.020 314.497 477.972 625.542 844.621 1043.62 1308.46 1568.97
35 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
40 10 51.0333 122.390 complex complex 443.473 614.086 825.124 1033.09 1294.16 1555.43
40 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
40 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
exact 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
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Table 4. Eigenvalues convergence for cases 3 & 4 with a = 0.1 and b = 0.9.
imax WP µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

case 3 with a = 0.1 and b = 0.9.
10 10 16.6794 65.0525 -126.964 144.706 253.481 391.582 562.552 759.530 1095.61 -2318.00
10 15 16.6794 65.0525 -126.964 144.706 253.481 391.582 562.552 759.529 1095.61 -2318.00
10 20 16.6794 65.0525 -126.964 144.706 253.481 391.582 562.552 759.529 1095.61 -2318.00
15 10 15.4359 61.7448 138.899 246.896 385.712 555.287 755.760 987.037 1249.33 1544.57
15 15 15.4359 61.7448 138.899 246.896 385.712 555.287 755.760 987.037 1249.33 1544.57
15 20 15.4359 61.7448 138.899 246.896 385.712 555.287 755.760 987.037 1249.33 1544.57
20 10 15.4219 61.6871 138.795 246.746 385.538 555.170 755.642 986.962 1249.13 1542.14
20 15 15.4219 61.6871 138.795 246.746 385.537 555.170 755.643 986.961 1249.13 1542.14
20 20 15.4219 61.6871 138.795 246.746 385.537 555.170 755.643 986.961 1249.13 1542.14
25 10 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
25 15 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
25 20 15.4213 61.6851 138.791 246.740 385.532 555.165 755.642 986.960 1249.12 1542.13
30 10 15.4211 61.6850 138.791 246.740 385.534 555.169 755.653 986.954 1249.11 1542.13
30 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
30 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 10 50.4850 108.667 212.020 314.495 477.974 625.538 844.625 1043.61 1308.47 1568.95
35 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
35 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
40 10 51.0338 122.389 complex complex 443.479 614.080 825.128 1033.08 1294.16 1555.43
40 15 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13
40 20 15.4213 61.6850 138.791 246.740 385.531 555.165 755.642 986.960 1249.12 1542.13

case 4 with a = 0.1 and b = 0.9.
10 10 15.4422 61.7092 138.838 246.74 385.847 556.311 794.983 1072.08 -1559.16 -2388.64
10 15 15.4422 61.7092 138.838 246.74 385.847 556.311 794.983 1072.08 -1559.16 -2388.64
10 20 15.4422 61.7092 138.838 246.74 385.847 556.311 794.983 1072.08 -1559.16 -2388.64
15 10 15.4214 61.6944 138.792 246.74 385.533 555.201 755.687 987.295 1249.41 1543.94
15 15 15.4214 61.686 138.792 246.74 385.533 555.194 755.688 987.293 1249.41 1543.94
15 20 15.4214 61.686 138.792 246.74 385.533 555.194 755.688 987.293 1249.41 1543.94
20 10 13.1034 61.6838 145.534 246.74 390.386 555.17 758.952 986.963 1250.6 1541.93
20 15 15.4213 61.685 138.791 246.74 385.532 555.165 755.643 986.962 1249.13 1542.13
20 20 15.4213 61.685 138.791 246.74 385.532 555.165 755.643 986.962 1249.13 1542.13
25 10 62.926 66.5679 246.74 302.313 554.054 611.358 986.576 1012.93 1513.1 1535.59
25 15 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.961 1249.12 1542.13
25 20 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.961 1249.12 1542.13
30 10 — — — — — — — — — —
30 15 15.4213 61.6847 138.791 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13
30 20 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13
35 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
35 15 15.4211 138.789 246.74 246.872 385.532 675.772 755.641 1089.42 1249.12 1585.22
35 20 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13
40 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 15 13.6667 61.864 246.74 281.68 555.22 605.148 986.936 1004.05 1504.53 1542.2
40 20 15.4213 61.685 138.792 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13
40 25 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13
exact 15.4213 61.685 138.791 246.74 385.531 555.165 755.642 986.96 1249.12 1542.13


