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Abstract. The paper presents a comprehensive overview of recent advancements in theoretical and experimental 
research on modeling, analysis, and nonlinear/nonregular phenomena in the resonant dynamics of sagged, horizontal 
or inclined, elastic cables. Hints for proper reduced order modeling in cable dynamics are obtained from asymptotic 
solutions or experimental investigations, and challenging issues arising in the characterization of involved bifurcation 
scenarios to complex dynamics are specifically  addressed. 
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1. INTRODUCTION  

 
Suspended cables are lightweight, flexible structural elements used in several applications in mechanical, civil, 

electrical, ocean and space engineering, due to their capability of transmitting forces, carrying payloads and conducting 
signals across large distances. At the same time, the suspended cable is a basic element of theoretical interest in applied 
mechanics, and an archetypal model of various phenomena in nonlinear dynamics for being prone to large amplitude 
vibrations.   

Upon classical analyses of linear vibrations (Irvine, 1981; Triantafyllou and Grinfogel, 1986), further complemented 
by recent achievements on experimental validation of theoretical phenomena (Russell and Lardner, 1998) and unified 
treatment of shallow and non-shallow cables (Lacarbonara et al., 2007), finite amplitude cable vibrations have been a 
subject of intensive research in the last two decades, as documented by a few review articles concerned with 
deterministic (Rega, 2004) and stochastic (Ibrahim, 2004) regimes. Focusing on the former, nonlinear vibrations under 
various conditions of planar and nonplanar, internal, external and/or parametric, resonances are addressed by means of 
variably refined theoretical models, through purely analytical, numerical or mixed treatments. Owing to the inherent 
combination of system quadratic and cubic nonlinearities, a rich variety of nonlinear dynamic features of cable response 
has been unveiled by previous research in the field. 

However, description and understanding of the overall system nonlinear dynamics still suffers from a number of 
limitations, which are herein schematically summarized. From the modeling and analysis viewpoint, they are concerned 
with the solely consideration (i) of approximate continuous cable models, (ii) of quite low-dimensional finite 
representations and analysis of such models, and (iii) of only shallow horizontal or nearly taut inclined cables, with the 
ensuing incomplete and/or unsatisfactory description of actual cable dynamics. From the viewpoint of system response, 
(iv) just partial description of the many involved (solely in-plane or in-plane/out-of-plane) interaction phenomena 
possibly occurring in various internal/external/parametric resonance conditions has been obtained, along with (v) a 
limited knowledge of transition scenarios to nonregular dynamics. Moreover, still (vi) an incomplete cross-validation of 
analytical and numerical solutions, and (vii) a lack of experimental results are to be noticed. Based on previous 
achievements in the field, the theoretical and experimental research in the last few years is being aimed at overcoming 
some of the above mentioned issues.  

Along these lines, the present paper provides an overview of the most important topics, concerned with modeling, 
analysis and system phenomenology, that are being tackled at both theoretical and experimental level in cable nonlinear 
dynamics. The paper is organized as follows. Continuous modeling is discussed in Sect. 2, pointing out the main 
relevant approximations.  Multimode discretization aimed at obtaining reduced-order models to be tackled via mainly 
analytical techniques and to be reliably referred to for highlighting some main features of resonant nonlinear dynamic 
response of the underlying infinite-dimensional system are addressed in Sect. 3 and 4, respectively. Then, challenging 
issues concerned with experimental characterization of cable nonlinear dynamics are discussed (Sect. 5), paying special 
attention to the description and understanding of involved bifurcation scenarios and of the ensuing complex dynamics 
(Sect. 6). Further expected research developments are mentioned at the end of the paper.        
 
2. CONTINUOUS MODELING  

 
The continuous model mostly widely used for analyzing the large amplitude, forced, damped, three-dimensional 

vibrations of a suspended cable refers to a perfectly flexible, homogeneous, linearly elastic, system, with negligible 
torsional, bending and shear rigidities, is based on the quasi-static assumption (also called static condensation) of  the 
axial stretching, and considers a horizontally hanging shallow cable with two supports at the same level (Rega, 2004). 
Any of the previous assumptions is somehow relaxed in more recent continuous formulations.  
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Still keeping the elastic material assumption and accounting for the solely axial rigidity, a more general model of 
suspended cable is based on a refined kinematical description of the cable element deformation and considers an 
arbitrarily sagged and inclined system (Srinil et al., 2003, 2004). The corresponding exact partial differential equations 
(PDEs) of 3D cable motion read: 
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where u(x, t), v(x, t), w(x, t) are the dynamic horizontal, vertical and out-of-plane displacement components in a 
Cartesian coordinate frame measured from the static equilibrium configuration yo(x) attained by the cable under its own 
gravity g, eo is the initial static strain, E, A and wC are the cable Young’s Modulus, cross-sectional area and self-weight 
per unit unstretched length, respectively, cu, cv, cw are viscous damping coefficients, and Fu, Fv, Fw are uniformly 
distributed harmonic external forcing. A prime (dot) represents partial differentiation with respect to the horizontal 
space coordinate x (time t).  

Based on the assumptions of small static strain and moderately large vibration amplitudes associated with small 
dynamic strain, approximate, third-order, nonlinear PDEs of motion are derived (Srinil et al., 2007). They exhibit both 
quadratic and cubic nonlinear terms even in the absence of initial sag (i.e, in the taut string case), and account for 
spatially non-uniform extensional dynamic strain, with the ensuing spatio-temporal variation of the nonlinear dynamic 
tension. Along with the exact model, the approximate model nonlinearly couples the longitudinal and transverse (in-
plane or out-of-plane) cable dynamics, thus being referred to as a kinematically non-condensed model to distinguish it 
from the above mentioned condensed model, governed by integro-PDEs accounting for the solely transverse dynamics, 
typically considered in the cable literature. Besides some further, minor, kinematical assumptions, the latter model 
basically results from neglecting the longitudinal inertia and viscous damping effects in the PDEs of motion, which 
corresponds to assuming that the cable nonlinearly stretches in a quasi-static manner in the absence of longitudinal 
external loading, and entails a space-independent dynamic tension.  

As regards cable sag and inclination, a closed-form solution of the inclined cable static equilibrium approximate up 
to the cubic order has to be used in the relevant equations of motion, based on a relatively small sag assumption, in 
order to account for the system asymmetry in also the nonlinear range (Rega and Srinil, 2007). It allows to describe the 
frequency avoidance (or veering) phenomenon and the associated hybrid modes (Triantafyllou and Grinfogel, 1986), 
which actually distinguish the linear dynamics of sagged inclined cables with respect to the frequency crossover and the 
associated symmetric/antisymmetric modes of sagged horizontal cables. Again, this is in contrast with the parabolic, 
symmetric, equilibrium profile usually considered in the nonlinear dynamics literature of nearly taut inclined cables, 
which exhibit the same linear dynamic behavior as that of the corresponding small-sag horizontal cables.  

 
3. MULTIMODE DISCRETIZATION AND ANALYSIS  
 

The exact cable model described by Eqs. (1) is solely referred to in purely numerical treatments of a given nonlinear 
dynamic problem based on, e.g., the space-time finite difference method coupled with a predictor-corrector iteration 
algorithm (Srinil et al., 2003, 2004). The major advantage of such a treatment stands in allowing to capture the spatial 
richness of cable response and its time-varying content, and in obtaining information about the possibly significant 
involvement of higher-order modes which ensues from the considered multidegree-of-freedom model. In contrast, if the 
interest is in highlighting the characterizing features of system nonlinear dynamics in different resonance conditions, 
any of the solely handable approximate models, whose analysis can be pursued via analytical or mixed analytical-
numerical approaches, are referred to. The ensuing static and nonplanar/planar linear and nonlinear dynamic results can 
be thoroughly validated against those of the exact model via numerical techniques (Runge-Kutta/shooting, finite 
elements, finite differences, see Srinil et al. (2007)), thus allowing for a proper approximate continuous model selection 
in different technical situations.     

In a reduced-order model and analytical solution perspective, a multimode discretization of the PDEs of the 
approximate non-condensed model is made based on a Galerkin projection accounting for the full-basis eigenspectrum 
of cable linear modes, and an asymptotic analysis of the ensuing infinite set of nonlinearly coupled ODEs is developed 
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through any perturbation technique (typically, the multiple time scales method) (Srinil et al., 2007). Provided enough 
modes are retained in the discretization, the relevant outcomes are substantially equivalent to those furnished by the 
direct application of the asymptotic method to the original, approximate, PDEs, with no a priori assumptions of the 
displacement solution form (Lacarbonara et al., 2002). 

Depending on the generalized Irvine elasto-geometric parameter governing the dynamic behavior of 
horizontal/inclined cables (Irvine, 1981; Triantafyllou and Grinfogel, 1986), a very rich pattern of internal resonance 
conditions (1:1, 2:1, and/or 3:1) involving different modes occurs at both crossover (avoidance) frequencies of 
horizontal (inclined) cables and far away from them.  

Multiple scale analyses (Nayfeh, 1981, 2000) of the various resonant dynamics are accomplished up to the second-
order, with the aim of capturing the combined effects due to higher-order quadratic and cubic nonlinearities. Indeed, in 
the 1:1 and 3:1 resonances – which are associated with cubic nonlinearities – the secular effects directly appear at the ε3 
order (with ε being a small parameter), whereas in the 2:1 resonance – associated with quadratic nonlinearities – they 
are split between the ε2 order (due to quadratic nonlinearities only) and the ε3 order (due to higher-order quadratic as 
well as cubic nonlinearities). In particular, the second-order effects of quadratic nonlinearities play a meaningful role in 
the involvement of non-negligible (both low- and higher-order) non-resonant modes in cable response (Srinil and Rega, 
2007a, 2007b; Rega and Srinil, 2007; Lacarbonara et al., 2007b). Detailed analyses and comparisons of the 
contributions of various – resonant and non-resonant – modes to system dynamics, as determined by the governing 
nonlinearities in the asymptotic solutions, allow to make convergence analyses of the response of various cables in 
terms of resonantly coupled amplitudes and frequencies, and to get hints about the proper selection of variable reduced 
order models.  

 
3.1. Asymptotic solutions at various resonance conditions 
 

For each considered internal resonance condition, the multiple scale analysis provides the amplitude and phase 
modulation equations (APMEs) of the involved resonant modes, whose fixed points correspond to the periodic motions 
of the original ODEs. Analysis of the interaction coefficients in the multiple scale solution of free nonlinear vibrations 
highlights possible restrictions as to the nature of the involved cable modes (e.g., symmetric and/or antisymmetric) in 
order for the internal resonance to be actually activated (Lacarbonara and Rega, 2002). In this respect, remarkable 
qualitative differences occur between horizontal and inclined cables, based on the associated existence or non-existence, 
respectively, of non-linear orthogonality properties of the relevant normal modes (Rega and Srinil, 2007). The multiple 
scale analysis in various internal resonance conditions also furnishes the coupled cable dynamic configurations 
associated with the nonlinear normal modes of the system, which meaningfully account for the spatial corrections, with 
respect to the reference linearly resonant modes, due to the quadratic nonlinearity effects of all infinite modes or of the 
considered non-resonant modes in a finite discretization (Lacarbonara et al., 2002; Srinil and Rega, 2007a). This is also 
of major importance as regards the evaluation of cable nonlinear dynamic tension and of its actual space-time 
modifications. In turn, the multiple scale analytical predictions are validated against the numerical outcomes of finite 
elements (Gattulli et al., 2004) or finite difference (Srinil and Rega, 2007a, 2008) solutions of the original, exact or 
approximate PDEs of motion, under specified initial conditions.    

In the case of forced planar vibrations under uniformly-distributed vertical harmonic excitation at primary resonance 
with some internally resonant mode, analysis of the APMEs with the associated nonlinear interaction coefficients, as 
provided by the multiple scale analyses, allows to draw a general description of various possible resonant solutions 
occurring for horizontal (symmetric) and inclined (asymmetric) cables (Rega and Srinil, 2007). Depending on (i) the 
generalized elasto-geometric parameter λ/π, (ii) the kind of activated internal resonance, and (iii) the primary resonance 
of either a high (s) or low frequency (r) mode, a summary of the existence of uncoupled (UC) and/or coupled (C) mode 
planar solutions for horizontal (inclined) cables at crossover (avoidance), or away from it, is reported in Table 1.  
 

Table 1. A summary of regular planar solutions in horizontal/inclined cables at various internal resonances. 
 

s:r  λ/π  n 
horizontal (sym.) cables inclined (asym.) cables 

Ω = ωs+ε nσf Ω = ωr+ε nσf Ω = ωs+ε nσf Ω = ωr+ε nσf 
1:1 
 

CR vs. AV 2 UC/C  UC/C C  C 

2:1 CR vs. AV 
Non-CR vs. Non-AV 

1 UC/C C* UC/C C 

3:1 Non-CR vs. Non-AV 2 UC/C C UC/C C 
*At CR, only with non-vanishing excitation on the low-frequency mode 
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In whatever internal resonance condition, UC solutions only involve the directly excited resonant mode whereas C 
solutions also involve the non excited mode which is indirectly driven into the response via an internal resonance 
enhanced mechanism of energy transfer. Both UC and C solutions coexist for 1:1 resonant crossover cables, whereas 
only C solutions exist for avoidance cables, regardless of the mode being directly excited. In turn, as regards 2:1 and 3:1 
resonances, UC and C (only C) solutions exist when directly exciting a high-frequency (low-frequency) mode, 
irrespective of the considered horizontal (inclined) cable being at crossover (avoidance) or away from it. This implies 
that 2:1 and 3:1 (1:1) resonant solutions do (do not) depend on the mode being directly excited, while they do not (do) 
depend on the cable geometry being symmetric or asymmetric. It is thus evident how moving from horizontal to 
inclined cables – with the associated modification from purely symmetric/antisymmetric to hybrid linear modes – 
entails a substantially different scenario of nonlinear response in the 1:1 internal resonance condition.   

 
4. MAJOR ISSUES IN THE RESONANT VIBRATIONS OF HORIZONTAL/INCLINED CABLES 
 

Based on non-condensed/condensed models, multimode discretization and second-order multiple scale analyses, the 
non-linear interactions occurring in free or resonantly forced planar vibrations of various horizontal/inclined cables 
under different internal resonance conditions are investigated. Steady-state and periodic responses of the APMEs, as 
well as their stability and bifurcation features with a varying control parameter, are evaluated through continuation of 
frequency- and force-response diagrams. Direct numerical simulations of the APMEs provided by the multiple scale 
analyses are also utilized to validate continuation results and to characterize the post-bifurcation dynamics in terms of 
possibly nonregular responses. 

Within the large amount of diverse dynamical aspects and the many criteria to be possibly adopted for discussing 
and comparing them, some major issues are herein schematically addressed by distinguishing among effects of 
continuous modeling approximations, features of internally resonant dynamics of horizontal or inclined cables with the 
ensuing differences in terms of proper reduced-order modeling, and nonlinear/complex phenomena characterizing the 
dynamics of various response classes.  

 
4.1. Non-condensed versus condensed modeling 
 

Depending on internal resonance condition and system elasto-geometric and control parameters, even for shallow 
cables the condensed model may lead to significant quantitative and qualitative discrepancies in the non-linear dynamic 
responses, bifurcation properties, as well as non-linear tensile or compressive stresses, with respect to the non-
condensed model (Srinil and Rega, 2007b). Actual errors are seen to be significant in coupled – particularly higher-
amplitude  –  responses, with respect to the uncoupled ones. Moreover, the kinematic condensation assumption shows 
to be definitely questionable when considering a larger-sagged or higher-extensible (Srinil and Rega, 2008a) resonant 
cable. 

In particular, longitudinal dynamics and space-dependent dynamic tension are accounted for in only the non-
condensed model, and play an increasingly meaningful role as the cable sag, inclination and/or extensibility increase. 
Overall, all of these parameters have significant effects on cable nonlinear dynamics. Yet, appreciable time-varying 
differences between maximum and minimum total tensions may occur in even shallow horizontal cables. 

 
4.2. Internal resonances and contributing modes  

 
Conditions for activation of internal resonances and nonlinear modal contributions to the ensuing dynamics may 

vary considerably for diverse resonant horizontal or inclined cables.  
For horizontal cables, 2:1 internal resonance is activated only when the involved high-frequency mode is symmetric, 

whereas for inclined cables, owing to the asymmetry effects of inclined configurations which entail modal hybridity, it 
is activated nearly always – depending on frequency-tuning and hybridity capacity – and occurs over a wide range of 
system parameters. In turn, the modification from purely symmetric/antisymmetric normal modes at crossover to hybrid 
normal modes at avoidance significantly makes the planar 1:1 resonant forced nonlinear dynamics of inclined cables 
different from that of horizontal cables.   

A major issue is concerned with the variable contribution of resonant and non-resonant modes to the overall 
response. Analysis of second-order quadratic modal contributions in 2:1 resonance shows that, besides the two resonant 
modes, only symmetric non-resonant modes affect the solution of (non-crossover) horizontal cables, whereas all non-
resonant modes – irrespective of their order or spatial character – do contribute for inclined cables. Some non-resonant 
modes may play a role even greater than the resonant ones. At avoidances, due to the system high modal density and 
strong coupling, the non-modeled hybrid mode – out of the two modes therein coexisting – may contribute to the 
response even greater than the directly-modeled hybrid mode. This highlights the necessity to account for both of them 
and the possible involvement of a larger number of coupled modes in avoidance cables than in crossover cables. Along 
the same line, in the 1:1 resonance at avoidance (crossover), the asymmetry (symmetry) features of inclined (horizontal) 
cables make the contribution from non-resonant modes greater (lower): for cables at first (λ/π ≅2) or second (λ/π ≅4) 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

avoidance with different inclinations (θ) see, e.g., (Fig. 1) the percent contributions of each resonant (encircled) and 
non-resonant (lower- and/or higher-order) modes to the second-order quadratic terms embedded in various nonlinear 
interaction coefficients K of the asymptotic solution (Rega and Srinil, 2007). 
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Figure 1. Mode contributions to various nonlinear interaction coefficients: θ=30 (upper, lower), 45 (middle) deg; λ/π ≅2 
(upper, middle), 4 (lower). 

 
Considerable effects occur as regards the proper reduced-order models to be referred to in the discretization for 

capturing the main response features of the actual underlying infinite-dimensional system. Generally speaking, there is a 
clear evidence about the significance of accounting for both resonant and non-resonant (usually higher-order) modes in 
all resonance cases, although the actual mode selection depends on system parameters and coupled amplitudes. In the 
2:1 resonance, the minimal (two-degree-of-freedom) model involving only the resonant modes shows capable of 
providing reliable results only for very low-sagged cables. In turn, for relatively low-sagged cables, it may be sufficient 
to account for non-resonant modes in evaluating the non-linear amplitudes and frequencies only, thereby developing an 
improved first-order multiple scale solution (Srinil and Rega, 2007a). In contrast, they have to be accounted for in also 
the nonlinear dynamic displacements (the full second-order multiple scale solution) – where they provide possibly 
meaningful spatial corrections – as the cable sag and/or inclination become significant. 

  
4.3. Modulated, non-regular, and multi-harmonic responses  
 

Overall, depending on the considered resonance cases, system control parameters, and initial conditions, a 
multiplicity of (stable/unstable) equilibrium and periodic solutions may occur, along with meaningful transitions from 
periodic to quasi-periodic and chaotic responses. For 1:1 internally resonant inclined cables at avoidance, isolated 
coupled-mode solution branches coexist with frequency islands, both experiencing saddle-node and Hopf bifurcations. 
Limit cycles may undergo cyclic-fold as well as direct/reverse period-doubling bifurcations. A whole cornucopia of 
non-linear phenomena are observed: sequences of period-doubling bifurcations to chaos, funnel-shaped chaos, on-off 
intermittency mechanisms, sudden switching of solutions via boundary crises, with also competing effects of dynamic 
solutions. Multi-harmonic response features occur mainly due to contributions from higher-order non-resonant modes. 
The dynamic deflections occurring in chaotically resonant vibrations exhibit non-periodic multi-mode features, with 
time-varying amplitudes which may become significantly large. As a result, the chaotic dynamics are endowed with 
remarkable asymmetric features of spatially non-uniform, strongly time-varying, tensile/compressive dynamic tensions 
(Rega and Srinil, 2007). 
 
5. EXPERIMENTAL CHARACTERIZATION OF CABLE DYNAMICS  
 

Of course, besides theoretical and numerical investigations, there is a need to describe the actual nonlinear behavior 
of sagged cables through also physical models. As a matter of fact, confirmation of regular system response and 
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meaningful information about possible occurrence of new/complex phenomena associated with the governing 
nonlinearities but often un-modeled in the theoretical analyses, are solely provided by experimental investigations of 
suspended cables aimed, more generally, at understanding their actual nonlinear dynamic behavior and complementing 
or validating theoretical and numerical predictions. Sophisticated experimental techniques allow us, among others, (i) to 
characterize response dimensionality in terms of both time and spatial complexity, (ii) to identify the minimum number 
and features of the spatial configuration variables actually needed to describe complex motions, (iii) to unveil possibly 
actual low-dimensionality of both regular and nonregular response, with the ensuing identification of suitable reduced, 
and minimal, theoretical models able to describe the system dynamics in a certain control parameter range. 
Experimental analyses may also provide important information about robust bifurcation features of regular responses 
towards complex dynamics.  

Quite a systematic investigation of cable nonlinear experimental dynamics has been accomplished for a horizontal 
elastic cable/mass hanging at (in-phase or out-of-phase) vertically and harmonically moving supports, and realizing, for 
relatively low excitation frequencies, a fairly reliable model of bare suspended cable (Fig. 2). System parameters 
(crossover or slacker cable) are adjusted to produce two different conditions of multiple (1:1 plus 2:1) internal 
resonances involving up to four modes (symmetric and antisymmetric, vertical (V) in-plane and horizontal (H) out-of-
plane). Nonlinear dynamics are investigated in various frequency ranges, which include meaningful external (primary 
and subharmonic) resonance conditions of either modes (Benedettini and Rega, 1997; Rega and Alaggio, 2001). 

 

 

Figure 2. Mechanical model with slacker system parameters and dynamic characteristics; experimental setup. 
 

5.1. System dimensionality and reduced order models 
 

Upon analyzing and classifying local and overall system responses in regular or non-regular regimes, based on 
various dynamical systems tools, attention is focused on characterizing some main features of system complex response 
and of the relevant bifurcation mechanisms by means of proper reconstruction techniques of the dynamics from 
experimental measurements. The dimensionality of the response is evaluated in terms of time and spatial complexity 
(Alaggio and Rega, 2000). Steady nonregular responses are characterized through the delay-embedding technique for 
the attractor reconstruction (Takens, 1981) and the proper orthogonal decomposition of the spatio-temporal flow 
(Holmes et al., 1996), the latter technique allowing to identify the experimental eigenfunctions, i.e. the proper 
orthogonal modes (poms), mostly contributing to system nonregular dynamics. System dimensionality is evaluated both 
by relating the dimension of the reconstructed attractors to the dimension of the linear phase space, and from the 
analysis of the spatial structure of nonregular flows and of the relevant dominating poms.  

  Though being the system potentially infinite-dimensional, not only its regular but also its complex response is 
shown to be relatively low-dimensional in several cases. Indeed, more than 90% of the nonregular signal power is 
representable by using up to three or four poms among those already responsible for the higher-dimensional coupled 
regular dynamics. In addition, overall heuristic correspondence between the main poms and the main linear physical 
modes of the system is seen to occur.  
    These results are of notable interest to the aim of associating to each class of complex response of the system, a class 
of reduced (and minimal) theoretical models able to describe the complex dynamics of the experimental system. Within 
the framework of a reduction procedure, these can be built specifically in each region of control parameter space either 
by using just the identified poms, or - getting hints from them - by projecting the infinite-dimensional dynamics on the 
known sub-optimal basis of corresponding linear modes (Alaggio and Rega, 2001). 
 
6. BIFURCATION SCENARIOS AND COMPLEX DYNAMICS 
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A challenging task in the experimental nonlinear dynamics of flexible systems as the sagged cable consists in 
characterizing bifurcation scenarios to complex response and the response itself. Generally speaking, this can be done 
by realizing a profitable feedback between experiments and theory allowing us (i) to possibly trace preliminary 
experimental results back to a canonical scenario from dynamical systems theory, (ii) to exploit hints from the latter to 
improve and steer the experimental analyses, (iii) to systematically pursue ahead the physical investigation by detailing 
the most robust features of system response and clarifying to what extent they can be referred to theoretical scenarios, 
(iv) to improve cable modeling, and (v) to identify and analyze a proper reduced order cable model aimed at (partially) 
reproducing the highlighted experimental scenarios. 

A general overview of the richness and robustness of different global bifurcation scenarios to chaos, occurring with 
different support motion in various regions of the excitation control parameter space, is reported in Table 2. Two main 
routes to chaos, possibly coexisting and competing with each other, do occur, namely a quasiperiodic (3-Tori 
breakdown) scenario and a scenario involving the global bifurcation of an homoclinic (or heteroclinic) invariant set of 
the flow (Rega and Alaggio, 2001).   

 
Table 2. A summary of non-regular response regimes, transition scenarios and involved poms. 

 
Experimental transition to nonregular dynamics 

cable support motion 
 in-phase anti-phase 
 external resonance condition external resonance condition 
 Primary subharmonic-½ primary subharmonic-½ 
 scenario poms scenario poms Scenario poms scenario Poms 

slacker QP V1 H1 
H2 

HOM  
(HET) 

V5 H5
V3 H3

HOM V2 H2 HOM 
(QP) 

V4 H4 
(+H1T H2) 

crossover no chaos HOM V5 H5
V3 H3

HOM V2 H2 HOM V4 H4 

 
6.1. Quasiperiodic transition to chaos  
 

Quasiperiodic transition to chaos is robust for the slacker cable at primary resonance under in-phase support motion, 
where it involves well identified experimental poms constituting the optimal basis for decomposing the spatio-temporal 
flow. Specifically, the first antisymmetric out-of-plane (H2) mode adds to the underlying first symmetric in-plane (V1) 
and out-of-plane (H1) modes, and plays the decisive role as regards transition to chaos. The experimental transition 
mechanism (Alaggio and Rega, 2000) looks quite rich and involved due to complicated interactions between various 
internally resonant and non-resonant modes, motion on a 2-Torus, and phase locked three-mode motions on 3-Tori. Yet, 
it is substantially traceable to a canonical scenario of bifurcation of flows via breakdown of regular dynamics on 3-Tori, 
known from dynamical systems theory and numerics. However, not all of the experimental response features can be 
explained according to the torus breakdown paradigm, due to the occurrence of intermittent synchronization on high-
periodicity solutions and competing complex phase-modulated regimes which are conjectured to represent toroidal 
chaos. 
 
6.2. A divergence-Hopf bifurcation organizing regular nonlinear dynamics and homoclinic chaos 
 

Homoclinic bifurcation involves just two main – though variable – poms, and shows to be quite a robust scenario 
with respect to variations of both cable geometrical-mechanical parameters and excitation conditions, thus being of 
general interest (Rega and Alaggio, 2001).  

To characterize in-depth the features of this seemingly paradigmatic scenario, the attention is focused on the 
homoclinic bifurcation of the slacker cable under anti-phase support motion at primary resonance, which is associated 
with the passage from a substantially unimodal (in-plane, V2) antisymmetric motion to a ballooning-type (in-plane/out-
of-plane, V2/H2, modes) antisymmetric motion evolving from periodic to quasi-periodic up to chaotic. Yet, the 
systematic experimental investigation needed for in-depth characterization of both classes of motion and transition 
scenario can be feasibly and reliably accomplished only working with a proper, thermally conditioned, experimental 
setup, which has the advantage of stabilizing the response of the very flexible system and of making it mechanically 
accessible without cable loosening effects, while at the same time allowing to consider the temperature as a further 
controllable parameter in addition to the excitation amplitude and frequency (Rega and Alaggio, 2009).  

The analysis shows how the overall cable dynamics possibly ending up with homoclinic chaos is organized by a 
codimension-two divergence-Hopf (d-H) bifurcation point where two (a Hopf and a pitchfork) bifurcation loci of the 
Poincaré map of the experimental attractor cross with each other in the excitation frequency-amplitude parameter plane. 
However, investigations made at different values of setup temperature highlights (i) a substantial decrease of the 
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excitation amplitude value at which the codimension-two bifurcation does occur, along with (ii) meaningful changes in 
the picture of the ensuing classes of regular and/or non-regular motion extending up to regions relatively far away from 
the organizing centre. This is clearly observable by comparing the response charts relevant to three different 
temperature values (Fig. 3). The relevant subfigures and tables show the most robust classes of motion occurring in 
each zone, along with the possibly competing classes (denoted by lower case labels and arrows in the second column of 
the corresponding table) alternatively attained for T=12°C when considering different initial conditions and/or sweeping 
directions of the control parameter value, herein represented by the excitation frequency. Based on systematic 
construction of bifurcation diagrams and spectra of singular values of the covariance matrix of measurements results 
(Rega and Alaggio, 2009), the various classes of motion are characterized both qualitatively and quantitatively in terms 
of periodicity (P), quasiperiodicity (QP) – and their degree – or chaoticity (CH), of dimension of the manifold (M) 
where the motion develops, of correlation dimension (DC) of the attractor, of dimension of the possibly resonant (R) 
invariant torus (D-T), of number (typically corresponding to the manifold dimension) of contributing poms that provide 
more than 90% of the experimental signal power and, finally, of mechanical meaning of the corresponding, vertical (V) 
or horizontal (H), linear modes.  

 

  

 

 
(*) unstable  

Zone Attractor Dimension Modes 
  Dc D-T poms  
      
A    P1M1 1 1 1 V2 
C QP1M1 2 2 1 V2 
B P1M2(SC) 1 2R 2 V2 H2 
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Figure 3. Response charts at various temperatures (T=12°C, 6°C and 4°C in first, second and third column, respectively) 
with zones of periodic (P), quasiperiodic (QP) and chaotic (CH) response, and with qualitative and quantitative 

characterization of the relevant classes.   
 
Besides lowering the critical forcing amplitude corresponding to d-H codimension-two bifurcation, lowering the 

temperature – which indirectly induces a material damping decrease – progressively entails a clearer scenario of regular 
response, along with the possibility to distinguish between chaotic motions characterized by either two (CHM2) or three 
(CHM3) basic poms, the latter involving also the out-of-plane symmetric mode H1 in addition to the reference in-plane 
(V2) and out-of-plane (H2) antisymmetric modes. Overall, with decreasing temperatures, the CHM2 class of motion – 
into which quasiperiodic two-mode motions (QP1M2) end up at also low excitation amplitudes – becomes structurally 
stable and robust, and exhibits a clear evidence of low-dimensional homoclinic chaos, as shown by the results of a delay 
embedding reconstruction of phase space from a relevant time series. As a matter of fact, the dynamics in the second 
order Poincaré section of the reconstructed attractor is organized by an unstable fixed point characterized by a two-
dimensional focus-stable manifold Ws and a one-dimensional saddle-unstable manifold Wu, and an invariant of the flow 
responsible for re-injection toward the fixed point. The fixed point on the second order Poincarè section corresponds to 
an unstable two-dimensional invariant of the flow resembling the formerly stable quasiperiodic solution QP1M2. In Fig. 
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4, besides the time series (a), two of the recorded homoclinic orbits are reported (b,c), showing the ejection along the 
two opposite directions of the unstable manifold (w direction), and the re-injection onto the stable manifold (the uv 
plane), respectively. 

Overall, the availability of the temperature as a third control parameter shows to be fundamental: (i) to qualitatively 
refer the experimental unfolding of regular and nonregular cable dynamics in the considered frequency range to the 
theoretical unfolding of the divergence-Hopf bifurcation normal form; (ii) to unfold the system dynamics not only in 
the strict neighbourhood of the organizing d-H bifurcation but also in the ensuing postcritical regions where the 
dependence of material damping on temperature affects secondary bifurcations to homoclinic chaos; (iii) to show the 
variable involvement, in either quasiperiodic or chaotic responses, of a further proper orthogonal mode with respect to 
the reference two-mode normal form scenario ending up with an homoclinic chaos (Rega and Alaggio, 2009).  

Parallel ongoing theoretical studies (Alaggio and Rega, 2008) are concerned with developing a consistent 
phenomenologically-based two-degree-of-freedom model of the suspended cable. Availability of such a reduced order 
model and its analytical-numerical solution will allow us to check (i) the pursued theoretical interpretation of the 
dominant experimental scenario along with the possibility to (partially) reproduce it, and (ii) the likely need to account 
for also the resonant contribution of a third degree-of-freedom for actually reproducing the richness of experimental 
results in the post-critical range.  

 

 
(a) 

 
(b) 

 
(c) 

Fig.4. Time delay reconstruction: (a) time series, (b) and (c) homoclinic orbits due to homoclinic tangency.  
 

7. FURTHER RESEARCH DEVELOPMENTS  
 

Research developments on cable nonlinear dynamics are expected on several of the above mentioned topics. To 
name just a few: (i) Concerned with modeling, attention is already being paid to introducing material nonlinear 
constitutive laws and/or hysteretic behaviour, as well as cable bending and torsion capacities, in view of specific 
analyses and applications. (ii) A more complete description of nonlinear multimodal interaction phenomena in the fully 
3D dynamics is being accomplished, along with consideration of further internal resonance conditions. (iii) Improving 
the understanding of bifurcation scenarios and systematically describing large amplitude responses through  properly 
tailored reduced order theoretical models are topics of major interest.   

Further challenging issues are concerned with companion topics of both theoretical and practical importance. They 
include, among others, considering cables with moving loads, analyzing the distinguishing features of fluid-cable 
interactions, to be accomplished based on reliable formulation and treatment of various (structural-induced, fluid-
induced and fluid-structure interface-induced) problem nonlinearities (Ibrahim, 2004; Rega and Sorokin, 2007), as well 
as the many possibilities to control unwanted cable nonlinear vibrations, and the associated phenomena, by means of a 
considerable variety of passive, active or hybrid control techniques (Gattulli, 2007).  
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