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Abstract. This article was concerned with numerical simulations of yield stress fluid flows through a sudden
expansion. Although the concept of a true yield stress remains a controversial issue in viscoplastic materials, the
presence of an apparent yield stress (Barnes, 1999) is a reality for engineering purposes, since many industrial
materials ranging from colloidal suspensions to drilling muds and cement pastes present this property. In this article
stabilized finite element simulation of the Bingham fluid model regularized by the strategy proposed by
Papanastasiou (1987) have been performed. The employed mechanical model was based on the mass and momentum
balance equations, coupled to the regularized Bingham equation. A multi-field numerical strategy, using as primal
variables shear stress, velocity and pressure was employed to approximate the problem by a stabilized finite element
methodology: a multi-field Galerkin/Least-Squares method. This methodology was built to circumvent both
compatibility conditions involving the pressure-velocity (the well known Babuska-Brezzi condition) and the stress-
velocity finite element subspaces. In addition, the method also handles very high Bingham flows in a stable and
accurate manner. The numerical simulation performed in this article concerned the flow of a regularized Bingham
fluid through a geometry of industrial interest - namely a 4:1 sudden expansion. In order to isolate the effect of yield
stress on the viscoplastic fluid dynamics, creeping flow was assumed and the Bingham number has been investigated
for a wide range, ranging from 0.1 to 100. In the sequence, inertia effects have been accounted for by ranging the
Reynolds number up to 45. The obtained numerical results have approximated very high Bingham flows and inertia
flows characterizing the morphology of the yield surfaces.

Keywords: Non-Newtonian fluids; regularized Bingham model; multi-field formulation; Galerkin Least-Squares
method; expansion flow.

1. INTRODUCTION

Fluids with a Newtonian behavior represent more than 90% of the fluids present in the biosphere, with significant
presence in industry and in everyday life. However, a non-Newtonian behavior is observed in most of the industrial
synthetic fluids and in biological relevant fluids like blood, just to mention some cases. An important characteristic of
these fluids is its high consistence, making their flow dominated by viscosity and elastic effects, even for low Reynolds
numbers (creeping flows). Some non-Newtonian fluids may flow in turbulent regime. In this case their consistence isn't
high, but they present very complex rheological features. Examples are dilute and semi-dilute solutions of polymeric
fluids, additives of the surfactant type or particles suspensions and/or fiber suspensions. (Pinho and Cruz, 2006). Non-
Newtonian behavior occurs in many fluids such as, for instance, crude oil, lubricating fluids used in drilling wells of oil
and natural gas, sludge from the extractive industry, paints, cosmetics, glues, soaps, detergents, medicines and many
products in food industry.

In this article viscolplastic models were considered with the presence of an apparent yield stress, accepted for
engineering purposes (Barnes, 1999). In these models a yield stress must be exceeded before significant deformation
can occur, characterizing a viscoplastic material — an important class of non-Newtonian materials, which may be fitted
by Bingham, Herschel-Bulkley or Casson models. A particular yield stress model was considered — the so-called
Bingham fluid model.

Mechanical modeling of phenomena with engineering interest are usually represented mathematically by systems of
differential equations which — except in simple cases that allow analytic solution — are treated computationally with
numerical methods. The Finite Element Method has been employed in this work. The application of the classical
Galerkin method in the numerical approximations of incompressible flows shows some difficulties (Johnson, 1987).
Initially, the finite element sub-spaces of velocity and pressure must be matched, satisfying the classic Babuska-Brezzi
condition (BabuSka, 1971; Brezzi, 1974) — since the pressure field must be computed like a Lagrange multiplier
associated to the incompressibility restriction of the velocity field, creating a mixed problem of velocity and pressure.
Another difficulty appears in case of multi-field formulations: the choice of the finite elements sub-spaces of stress and
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velocity. The third difficulty would be the instability inherent to centered discretization schemes — obtained using either
the Galerkin formulation or a finite differences approach — in addressing advective dominated problems, due to the
asymmetry of the advective operator (Brooks and Hughes, 1982; Patankar, 1989). This instability, that causes an
oscillatory behavior of the discretization employing Galerkin method, may be present due to inertia effects, and it can
get worse due to the non-linearities present on the constitutive models of generalized Newtonian fluids.

In this work a stabilized finite element methodology was employed to simulate flows of a Bingham fluid through a
sudden expansion. The classical Bingham model was regularized by the strategy proposed by Papanastasiou (1987),
specifically developed for Bingham fluids, describing the shear stress field by a single equation. The mechanical model
was obtained by combining this constitutive assumption to mass and linear momentum balance equations. The resulting
multi-field model — in shear stress, velocity and pressure — was approximated by a multi-field Galerkin/least-squares
method (GLS), that uses a least-squares formulation to build the perturbation terms, increasing the stability of the
original Galerkin formulation, without harming its consistency. This methodology has already been largely used to treat
structural problems and fluid flows (Franca and Frey, 1992; Franca et al., 1994). The additional terms (of perturbation)
come from a minimization of the least-squares of the residues of the Galerkin formulation. The GLS method stabilizes
the advective operator of the motion equation, adding an upwind effect in the direction of the flow streamlines (Brooks
and Hughes, 1982; Franca et al., 1992) in addition to modifying the Galerkin classic formulation, no longer requiring
the satisfaction of the BabuSka-Brezzi condition (Hughes et al., 1986). Besides, compatibility of velocity and extra
stress subspaces is not required either.

This article considered numerical simulations of the flow of a regularized Bingham fluid through a 4:1 sudden
expansion, initially assuming creeping flow regime and ranging Bingham number from 0.1 to 100, thus isolating the
viscoplastic effects from the inertia ones. In the sequence, inertia effects on the morphology of yielded and unyielded
zones have been accounted for by considering a mild Bingham number (Bn=2) while Reynolds number varied up to
45, The obtained numerical results have attested the properness of the employed numerical methodology to
approximate very high Bingham flows and inertia flows characterizing in this way the morphology of the vyield
surfaces.

2. MECHANICAL MODELING

The laws of balance for mass and momentum were postulated regardless the considered material, thus requiring
constitutive assumptions to describe the behavior of the body under the action of forces. Supposing that the external
efforts are given by the gravitational field, the internal efforts — performed by a given portion in the body over
neighboring portions — are expressed through the Cauchy stress tensor, relating the forces to the deformation. In Fluid
Mechanics, when inelastic fluids are concerned, the deviatoric portion of Cauchy tensor, the shear stress, may be related
to the rate of strain tensor (the symmetric portion of the velocity gradient) by the shear rate viscosity. A convenient
visualization of inelastic fluids is given by a flow curve, in which non-Newtonian behavior is expressed either as a non-
linear curve, or as a linear curve that does not pass through the origin. This definition, in opposition to the Newtonian
behavior (represented by a linear curve passing through the origin) appeared when the properties of the non-Newtonian
fluids were considered anomalous. Nowadays, the trend is to consider the Newtonian fluids as a special case of a largest
category of fluid: the generalized Newtonian fluids or the inelastic fluids. These fluids are described by the following
constitutive assumption:

=2n()D(u) @

where T represents the shear stress, D the rate of strain tensor (the symmetric portion of the velocity gradient),
n(y) the shear rate viscosity, where the shear rate y is a scalar representing the strain tensor Frobenious norm, a

. . . . / /
mathematical measure of the shear rate, assuming simple shear flow: ¥ =(2115)"*=(2tr D*)"*

Viscoplastic fluids internal structure presents some rigidity, leading to a minimum critical shear stress t, , that
must be overcame in order to start the flow, behaving as a fluid when a given shear stress is exceeded and as a solid,

otherwise. Examples of real fluids with this behavior are toothpaste, mayonnaise, blood and some particle suspensions.
Bingham model — proposed by Bingham in 1922, is characterized by a limit stress t, above which the material
flows like a viscous fluid. The Bingham model is the simplest viscoplastic model, since the viscosity does not vary with

the shear rate after the limit stress is reached, being expressed as (Bird et al., 1987):

T=T,+n,y if =7,
y =0, if T<t, )
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with n, representing the plastic viscosity of the material — a constant Newtonian viscosity. This model presents two

rheological parameters: t, and n, .FromEqg. (2) the shear rate viscosity is given by:

n=h+n if T=71
y ’ ®)
n—o, if T<T

Aiming to eliminate the discontinuity on the shear stress field, Papanastasiou (1987) proposed a regularization of the
classic viscoplastic functions, by introducing a regularization parameter m. Although originally proposed for Bingham
fluids, this regularizing strategy is employed for other viscoplastic models. As the parameter m tends to zero, the
viscosity function, regularized by the Papanastasiou equation, tends to the viscosity function of the employed
viscoplastic model, either shear-thinning, shear thickening or with constant viscosity. The regularization proposed by
Papanastasiou (1987) generates continuous functions for shear stress and shear rate viscosity, valid both for the yielded
and unyielded regions. Applying Papanastasiou (1987) regularization strategy to Egs. (2) and (3) it comes that:

T=n,y+T, [1—eXP(— Yl

(4)
n(y)=n,+ [l exp(—my)]

Thus, combining the mass and momentum balance equations with the constitutive assumption given by Eq. (4),
assuming steady-state regime and incompressible fluid flow and incorporating the boundary conditions, the mechanical
model concerned herein for a multi-field boundary value problem, defined by the triple shear stress, pressure and
velocity fields, and the associated system of contact and body forces, may be stated as:

pl(Vu)ul+V p—divrt+V p=f in Q
divu=0 in Q
T—2n(y)D(u)=0 in Q (5)
u=u, on I,
[tT—plln=t, on I',

where u represents the fluid velocity, p its mass density, f the body force per unit mass, p is a non-thermodynamic
mean pressure, p=-1/3tr(T) and n(y) is the shear rate viscosity regularized by Papanastasiou (1987)
hypothesis given by Eq. (4). Besides, 77 is the portion of the boundary 7~ (of the region £2) where Dirichlet condition is
imposed, being ug a prescribed velocity field, 7+ is the portion where Neumann condition is imposed and t, is the stress
vector.

3. FINITE ELEMENTS APPROXIMATION

Based on the usual definitions of the subspaces for shear stress (Z"), velocity (V") and pressure (P") (Behr et al.,
1993), it is possible to write a Galerkin least-squares (GLS) multi-field formulation using the numerical strategy
proposed by Behr et al. (1993) for fluids with constant viscosity and subsequently employed by Zinani and Frey (2008),

considering a viscosity function dependent on the shear rate. The GLS formulation for the problem defined by Eq. (5),
is written as: Find the triple (<",p",u) eZ"xPhxV¢" such that :

B(r", p",u";S".q", v")=F (S",q",v") V(S",q", V") € Z"xP"xV (6)
where

B(t",p".u"s".q" V")=] (2;7('))‘1 "S$"dQ—[_ D(u)s'dQ

+[ ,p(Vu'lu")v d9+f "do-f_ p'divv"dQ+[ divu"g"dQ+e [ p"q"dQ
+ 2 o (e[ VU +V p! dnvr) (Re, ) (p[VV']u"+V ¢"—divS")d 0 )

+2n(y)B [, (2n(y)) *T"=D(u)").((2n(y)) *s"-D(v)")d 2+5 [  divu'divv'd Q

and
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F(s",q" V") —f f-vth+f th-vhdl"
+2 [, (p[VV'|u'+V g"—divs))d @ (8)

KeQ"

in which the parameters ¢<1 and 0<p<1 were used according to the suggestion of Behr et al. (1993) and the
stability parameters «(Re,) and &, evaluated in element level, were given by Franca and Frey (1992):

hy
o Rey) =3Nl | (Rey) 9)
s=X|ul,h E(Re,) (10)
Re,,0<Re, <1
5(Re)= f, Re,>1 (1)
m,|ul h
Re, =—K"1p k 12
= anly) (12
m,=min{1/3,2C, | (13)
C 2 hilldivD(u)'| «<[D(u)ls, Vu'eV' (14)

KeQ"

with hy representing the size of the mesh, y a scalar positive constant, the parameter my, being provided by the error
analysis of the GLS formulation introduced by Franca and Frey (1992) and  |u|, being the p-norm of R"

Observations:

1- Inequation (7) the terms in last two lines represent the least-squares terms from the continuity (term multiplied
by &), the motion (term multiplied by «(Rex)) and the material (term multiplied by £) equations.

2- Taking the stability parameters «, #and ¢ equal to zero on the GLS formulations defined by the Egs. (6)-(8),
the classic approximation of Galerkin on three fields for Eq. (5), is recovered. Its stability looses coerciveness,
when the viscosity tends to zero, and also it is necessary to satisfy both the Babuska-Brezzi condition (Ciarlet,
1978) and the compatibility condition between the approximation functions of the extra stress tensor and the velo-
city (Zinani and Frey, 2008).

3- The usual expression of the Reynolds mesh number (Johnson, 1987) was modified by including the parameter
my in Eq. (12), allowing considering the employed interpolation degree. This way, the advective-dominated regions
of the flow were characterized by Re,>1 and the diffusive-dominated ones by Re,<1 , regardless the con-
sidered element (Franca and Frey, 1992).

3.1. Nonlinear strategy

Substituting the shape functions on the GLS formulation given by the Egs. (6)-(8), the following semi-discrete
equation is obtained:

[(1+B8)E(n(y)+1-B)H+E,(n(y),u)lT
+[N (u)+N,(n(y),u)+ BK—(1+8)H =G +M]u (15)
+HG+GCu(n(y),u)+P|p=F+F,(n(y),u)

where [H] and [H™] are the matrices representing the coupling between t and u, [E] is the matrix related to the extra
stress tensor T, [N] is the advective term matrix, [K] the diffusive term matrix [G] the pressure term one, [G"] the
matrix of the continuity equation and [F] the body forces term matrix. The matrices with « index: [E.], [N<], [G.], and
[F.] come from the least-squares terms, while [M] and [P] represent the matrices of the &term and the s-—term,
respectively.

Equation (15) can be rewritten on the residual form:
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R(U)=0 (16)

in which U is the vector of the degrees of freedom of ¢, u and p, in the case of a two-dimensional flat problem being
represented by:

U=[1y,, Ty, T U U,y pl’ 17)
and R(U) is given by:

R(U)= [(1+B) (n(y)+(1=B)H+E,(n(y),u)lt
+[N (u)+N, (n(y), u)+BK—(1+8)H -G +M]u (18)
+[G+Gqu(n(y),u)+P|p=F+F.(n(y),u)

The solution of the system (16)-(18), was implemented by employing a quasi-Newton method (Dahlquist and Bjorck,
1969) where the Jacobian matrix in a generic iteration k was given by:

dR(U)

IU)="7571
U

(19)

The solution algorithm (Zinani and Frey, 2008) describes the numerical procedure, where the Jacobian matrix (19)
is updated for each two or three iterations:

ALGORITHM
1 Estimate the vector U° and choose the number of iterations (m) to update the Jacobian matrix J(U).
2 Do k=0, j=0 and e=10"
3 If k—int(k/m)xk=0 , then j=k.
4 Solve the system of equations to calculate the incremental vector a“**
J(UMa“ =R (U") (20)
where R(U) is given by Eq. (18) and J(U) by Eq. (19).
5 Calculate the vector U¥* :
Uk+1=Uk+ak+1 (21)
6 Calculate  |R(UY) . If |R(U").>¢ thendo k=k+1 and return to the step 3; otherwise, store

the solution  U**'  and exit the algorithm.
4. NUMERICAL RESULTS

In this section, the multi-field GLS approximation for the problem described by Eq. (5) — presented in equations
Egs. (6)-(14) — was employed for simulating a Bingham fluid flowing through a planar 4:1 sudden expansion, depicted
in Figure 1. The numerical strategy has been described in the previous item. All results have been obtained by
employing a finite element code under development at Laboratory of Computational and Applied Fluid Mechanics
(LAMAC-UFRGS).

e
e
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Figure 1. Flow through a sudden expansion: (a) problem statement; (b) mesh detail at expansion region.

Since the channel is symmetrical only half the planar channel with an abrupt expansion was presented in Fig. 1(a).
Entrance and exit effects were neglected by making the smaller section length equal to 15 times the smaller section
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height (H — assumed unitary) while the larger section length was made 22.5H. As usual, no-slip and impermeability
boundary conditions have been imposed at channel walls while a symmetry condition was assumed at channel
centerline. A uniform unitary inlet velocity was considered, ui=1.0m/s and, since a uniform profile was assumed at the
exit too, it comes that u.,=ui/4, by continuity. Also, a unitary plastic viscosity was employed, namely 7,=1.0Pa.s.

(d)
Figure 2. Velocity along the channel for Re=0: (a) Bn=0.2; (b) Bn=2; (c) Bn=20; (d) Bn=30; (¢) Bn=60; (f) Bn=100.

Figure 1(b) showed details of the Q./Q./Q: adopted mesh at the expansion region presenting a mesh refinement at
the expansion zone, enabling to capture the strong gradients at this zone. A mesh with 19,800 Lagrangian bilinear finite
elements and 20,281 nodes has been selected.

Figures 2 to 4 depicted inertialess flows at the sudden expansion channel for distinct values of Bingham number,
while Fig. 5 presented the inertia effect on the yielded and unyielded zones morphology. Results have been obtained by
considering Papanastasiou regularization parameter (Eq. (4)) m=1000, following Mitsoulis and Huilgol (2004)
suggestion, while Bingham number (ratio of yield stress and Newtonian stress) and Reynolds number (ratio of inertial
and viscous forces) have been defined as:

Bn=— Re="~— (22)

Figure 2 presented the influence of Bingham number on the velocity on x-direction (along the sudden expansion
channel) for creeping flows, considering a large range of Bingham numbers. In Fig. 2(a), for Bn=0.2, a very small
influence of viscoplasticity was observed (the depicted behavior being analogous to a Newtonian one, as expected for
such a small Bingham value). However the morphology of the yielded and unyielded zones (black zones) depicted in
Figure 4(a) for Bn=0.2 has clearly shown the presence of rigid zones at the larger section of the channel. As expected,
as Bingham number increased, the influence of viscoplasticity has increased. Even for small values of Bn, namely
Bn=2, depicted in Fig. 2(b), a strong viscoplasticity was detected: at the smaller channel section the highest velocity
(u=1) was presented below the channel centerline in Fig. 2(b) and the distance to the centerline increased for Bn=20,
depicted in Fig. 2(c). For greater Bingham values — namely Bn=30, Bn=60 and Bn=100 (Figs. 2(d), 2(e) and 2(f),
respectively) the velocity along the channel was unable to show the influence of increasing viscoplastic effects.



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering

Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil
B =T
= 13-4" ] sos sl ‘ |‘
i | ‘ | el
/ L o
| — "I_ ==
I Pressure = Pressure e Pressure
3e402 1e+02 2e+01 -3e+02 Te+02 le+02 Ee+02 2e+02 1e+03
— | — —— ] — - —
(a) (c)
"/
L
|
| |
=1 Pressure el Pressure = Pressure
Te+02 de+02 1e+03 -1e+03 Be+02 3e+03 -1e+03 Te+03 de+03
—_—  — _— - — - —
(d) (e) (f)

Figure 3. Pressure along the channel for Re=0: (a) Bn=0.2; (b) Bn=2; (c) Bn=20; (d) Bn=30; (e) Bn=60; (f) Bn=100.

In Fig. 3 the influence of viscoplasticity on the pressure along the channel was shown, for inertialess flows and the
same Bingham numbers values employed in Fig. 2, indicating that the pressure absolute values increased with the
viscoplasticity increase. Actually as Bingham number increased, making viscoplastic effects more relevant, the pressure
drop also increased, because of the increase of unyielded zones.

0.39 0.67

014 0852 117 168 213

(C) 025 0703 196 161 206 (d}

Figure 4. Influence of Bingham number on yielded an unyielded zones for Re=0 along the channel: (a) Bn=0.2;
(b) Bn=2; (c) Bn=30; (d) Bn=100.

A difficulty in viscoplastic fluid flow calculation satisfying Bingham equation is the determination of possible rigid
zones, where no deformation occurs. Figure 4 presented yielded zones (white zones) and unyielded or rigid zones
(black zones), being either rigid dead zones at the expansion corner or rigid moving zones at the channel centerline
region. As Bingham number increased both unyielded dead and moving zones have increased. For Bn=0.2, Fig. 4(a),
there was a tiny unyielded moving zone upstream the expansion (up to x=-0.39, but downstream the expansion a small
rigid dead zone was present at the expansion corner while an unyielded moving zone formed a “plug flow”at the
centerline region (after x=3.85). All these mentioned viscoplastic effects were increased for Bn=2, depicted in Fig. 4(b).
The rigid moving zone at the centerline of the channel smallest section, visible in this case, ended slightly before the
expansion (at x=0, as shown in Fig. 1(a)). Also, the unyielded moving zone downstream was significantly enlarged,
when compared to Fig. 4(a). As expected, the rigid zones have increased in Fig. 4(c), for Bn=30 and Fig. 4(d), for
Bn=100, in which there was a very small yielded region both upstream and downstream the expansion. Actually, the
yielded region is large just at a small region downstream the expansion, even for small values of Bingham number.
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(c) ' ' ' ' )]

Figure 5. Inertia influence on yielded an unyielded zones for Bn=2 along the channel: (a) Re=0; (b) Re=15; (c) Re=30;
(d) Re=45.

In Fig. 5 the inertia effects were accounted for by considering yielded and unyielded zones for Bingham number
Bn=2 and distinct Reynolds number values. Figure 5(a), actually the same graph depicted in Fig. 4(b), considered
inertialess flow (Re=0), while in Fig. 5(b), Re=15; in Fig 5(c), Re=30 and in Fig 5(d), Re=45. The unyielded dead zones
at the channel expansion corner have increased with the increase of Reynolds number, while the “plug flow” —
characterizing the unyielded moving zone at the centerline region of the larger channel section — was moved
downstream the expansion as Reynolds number was increased. Although the inertia acted increasing the rigid dead
zones at the expansion corner, it also enlarged the yielded zones (white zones), particularly after the expansion.

5. FINAL REMARKS

A multi-field Galerkin least-squares finite element methodology, using as primal variables extra-stress, velocity
and pressure, has been employed to approximate 4:1 sudden expansion flows of a Bingham fluid, regularized by
Papanastasiou equation. The stabilized formulation, characterized by a simple computational implementation, has
adequately approximated highly viscoplastic flows and inertia flows, without satisfying neither the classical Babuska-
Brezzi compatibility condition nor the compatibility between velocity and extra-stress subspaces. A strong influence of
Bingham number was detected in the morphology of the yielded and unyielded zones. Besides, the more viscoplastic
the material, the higher the pressure drop through the expansion channel. Inertia flows have been considered allowing to
observe the “plug flows” — present in the unyielded moving zones — to be advected away downstream the expansion
plane, as Reynold number was increased.
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