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Abstract. One of the greatest challenges for the production of petroleum in deepwater is flow assurance. In fact, 
knowledge about the transient cool down behavior of the produced fluid is necessary to prevent the formation of 
hydrates and solid deposits during shutdown periods, which could result in a pipeline blockage and could result in 
large financial losses. In a typical subsea petroleum production system, the information provided by its monitoring 
system, regarding the temperature field is limited. One approach to predict the produced fluid temperature field in a 
pipeline system is to use Bayesian filters. In this paper, we compare the Kalman filter and the particle filter as applied 
to a problem of practical interest for the petroleum industry. Uncertainties in the state evolution and measurement 
models are taken into account by assuming that the errors involved are additive, normally distributed and with known 
means and covariance matrices. 
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1. INTRODUCTION  
 

Flow assurance in petroleum fields has become one of the greatest challenges on the hydrocarbon production in 
deepwater environments (Lorimer and Ellison, 2000, Cardoso et al., 2003, Tebboth, 2003, Su, 2003, Carmargo et al., 
2004, Denniel et al., 2004). This kind of environment presents high hydrostatic pressures and low sea bed temperatures, 
which can affect the flow of the produced multiphase fluids (oil, gas, condensate, and water) through pipelines up to the 
processing facilities. 

The thermal management of offshore petroleum fields is, among other operational requirements, one of the main 
issues for petroleum exploitation operations. Such is the case because, when hydrocarbons are produced and transported 
over long distances, it is crucial for flow assurance to avoid and control solid deposits and hydrate formation (see figure 
1) with thermal monitoring. There are different kinds of deposits that can be formed in pipelines and subsea equipment. 
The physical and chemical characteristics of the produced fluids may facilitate the accumulation of natural gas hydrates, 
wax, and other substances within the equipments (Lorimer and Ellison, 2000, Cardoso et al., 2003, Su, 2003, Carmargo 
et al., 2004, Denniel et al., 2004). These accumulations may cause reduction of flow area and increase the wall 
roughness, thus increasing the head loss and reducing the flow capacity, which can eventually block the pipeline, 
resulting in large financial losses. 

There are different physical and chemical techniques that can be applied to manage the potential deposits (Lorimer 
and Ellison, 2000, Cardoso et al., 2003, Carmargo et al., 2004, Denniel et al., 2004). These techniques include 
“pigging”, which represents a device to scrape the pipe walls, and the continuous injection of chemical inhibitors into 
the pipeline system to minimize the formation of these accumulations. One of the main strategies to mitigate these 
undesirable effects is to minimize heat losses from the system by using thermal insulation and/or active heating (Su, 
2003).  In fact, the accurate knowledge of the temperature field along the pipeline is one of the key requirements to 
maintain the produced fluid temperature above a minimum critical temperature (Alves et al., 1992, Su and Cerqueira, 
2001, Guo et al., 2006, Escobedo et al., 2006). Thermal analyses include both steady state and transient studies for the 
different stages of the field’s lifetime and must serve as a design tool for the selection of thermal insulation and/or 
heating systems, in order to avoid the formation of deposits. 
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(a) Hydrate (b)  Wax 

Figure 1. Typical deposits that cause pipeline blockage 
 

Recently, new technologies have emerged for detection, monitoring and control of critical parameters associated 
with the flow assurance, followed by the implementation of combined corrective actions, when anomalous conditions 
are identified (Brower and Prescott, 2004, Brower et al., 2005, Zan et al., 2005, Benson and Robins, 2007). For 
example, measurements of pressure, temperature, flow rate, fluid composition and strain, among other parameters, may 
be used to predict the onset of operational problems, thus allowing for timely corrective actions.  

As one of the most important aspects for the management of deposits is based on the accurate knowledge of the 
temperature field inside the pipeline and/or subsea equipment, the main objective of this work is to apply Bayesian 
filters (Maybeck, 1979, Andrieu et al., 2004, Kaipio and Somersalo, 2004, Scott and McCann, 2005, Orlande et al., 
2008) to predict the unsteady temperature field in a pipeline cross section during shutdown periods. The temperature 
field is predicted from limited temperature data available at the surface of the pipeline. Uncertainties in the state 
evolution and measurement models are taken into account, by assuming that the errors involved are additive, normally 
distributed and with known means and covariance matrices. The accurate estimation of the temperature field allows for 
the prediction of cold regions in the oil-gas-water mixture inside the pipeline. As a result, preventive actions can be 
taken beforehand in order to avoid the formation of deposits.  
 

2.  STATE ESTIMATION 
 

In state estimation problems (Maybeck, 1979, Kaipio and Somersalo, 2004, Scott and McCann, 2005) observations 
obtained during the evolution of the system, are used together with prior knowledge about the physical phenomena and 
the measuring devices, in order to sequentially produce estimates of the desired dynamic variables. State estimation 
problems can be solved with the so-called Bayesian filters (Maybeck, 1979, Kaipio and Somersalo, 2004, Scott and 
McCann, 2005). 

In order to define the state estimation problem, consider a model for the evolution of the state variables x in the 
form: 
 

( )1,x f x vk k k k−=  (1) 
 

where f is, in the general case, a non-linear function of x and of the state noise or uncertainty vector given by nv R v
k ∈ . 

The vector nx R x
k ∈  is called the state vector and contains the variables to be dynamically estimated. This vector 

advances in time in accordance with the state evolution model (1). The subscript k =1, 2, 3, …, denotes a time instant kt  

in a dynamic problem. 
The observation model describes the dependence between the state variable x to be estimated and the measurements 

z through the general, possibly non-linear, function h. This can be represented by 
 

( ),z h x nk k k k=  (2) 

where nz R Z
k ∈  are available at times kt , k=1, 2, 3,…. Eq. (2) is referred to as the observation/measurement model. The 

vector nn R n

k ∈   represents the measurement noise or uncertainty. 

The evolution and observation models, given by Eqs. (1) and (2), respectively, are based on the following 
assumptions (Kaipio and Somersalo, 2004, Scott and McCann, 2005): 
 
(a) The sequence xk  for k=1, 2, 3, …, is a Markovian process, that is, 

( ) ( )0 1 1 1, , ,x x x x x xk k k kπ π− −=…                                                                                                                                           (3.a) 

(b) The sequence zk  for k=1, 2, 3, …, is a Markovian process with respect to the history of xk , that is,  

( ) ( )0 1, , ,z x x x z xk k k kπ π=…                                                                                                                                                (3.b) 

(c) The sequence xk depends on the past observations only through its own history, that is, 
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( ) ( )1 1 2 1 1, , , ,x x z z z x xk k k k kπ π− − −=…                                                                                                                                   (3.c) 

 

where ( )a bπ denotes the conditional probability of a when b is given. 

For the state and observation noises, the following assumptions are made (Kaipio and Somersalo, 2004, Scott and 
McCann, 2005): 

 
(a) Fori j≠ , the noise vectors vi and v j , as well asni andn j , are mutually independent and also mutually independent 

of the initial state 0x .                                                                                                                                                        

(b) The noise vectors vi  and n j  are mutually independent for all i and j.                                                                    

 
Different problems can be considered for the evolution-observation model described above, such as (Kaipio and 

Somersalo, 2004, Scott and McCann, 2005): 
 

(i) The prediction problem, when the objective is to obtain ( )1: 1x zk kπ − ; 

(ii) The filtering problem, when the objective is to obtain ( )1:x zk kπ ; 

(iii) The fixed-lag smoothing problem, when the objective is to obtain ( )1:x zk k pπ + , where 1p ≥  is the fixed lag. 

(iv) The whole-domain smoothing problem, when the objective is to obtain ( )1:x zk Kπ , where 

{ }1: , 1, ,z zK i i K= = ⋯  is the complete set of measurements. 

 
3.  BAYESIAN FILTERS 
 

The most widely known Bayesian filter is the Kalman filter, with its application limited to linear models with 
additive Gaussian noises. In such cases where the models are non-linear or the errors non-Gaussian, Monte Carlo 
methods can be applied to solve state estimation problems (Maybeck, 1979, Carpenter et al., 1999, Doucet et al., 2000, 
Arulampalam et al., 2001, Kaipio and Somersalo, 2004, Andrieu et al., 2004, Scott and McCann, 2005, Del Moral et 
al., 2006, Del Moral et al., 2007, Johansen and Doucet, 2008, Orlande et al. 2008).  In this work we apply the Kalman 
filter and the particle filter to predict the temperature field in a pipeline system, as described below. 

 
3.1. Kalman filter 

 

This method, published in 1960, is a set of mathematical equations that recursively estimates the state variables of a 
system (Kalman, 1960, Sorenson, 1970, Maybeck, 1979, Ristic, 2004, Kaipio and Somersalo, 2004, Scott and McCann, 
2005, Welch and Bishop, 2005, Orlande et al., 2008). The Kalman filter is one of the most well-known and used 
Bayesian filters, but its application is limited to linear models with additive Gaussian noises.  

Considering the classical discrete-time state estimation problem in the case of linear models, the evolution equation 
that describes the time dependence of the state variable x can be written in the form: 

 

 1x F x s vk k k k k−= + +  (4) 
 

where F
k

is the linear evolution matrix of the state variable x, and the vector ks  is assumed to be known sources for the 

problem. The state uncertainty or noise vk  is assumed to be a Gaussian random variable with zero mean and covariance 

Q.  
The linear observation model can be represented in the form: 
 

z H x nk k k k= +  (5) 
 

where kz is the measurement vector and Hk  is the linear observation matrix. The observation noise kn  is assumed to 

be a Gaussian random variable with zero-mean and known covariance R. The state and observation noises are assumed 
to be mutually independent.  

The algorithm of the Kalman filter is presented below in tables 1 and 2, as applied to the state estimation problem 
given by equations (4,5) (Maybeck, 1979, Kaipio and Somersalo, 2004, Scott and McCann, 2005, Welch and Bishop, 
2005, Orlande et al., 2008). 
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               Table 1 – Discrete time evolution update equations  

                                               1x F xk k k
−

−=  (6.a) 

                                               1P F P F QT
k k k K k
−

−= +   (6.b) 
 

               Table 2 –  Measurement update equations  

                                                ( ) 1
K P H H P H RT T

k k k k k k k

−− −= +   
(7.a) 

                                                ( )x x K z H xk k k k k k
− −= + −   (7.b) 

                                                ( )P I K H Pk k k k
−= −  (7.c) 

 

Here, K is known as Kalman’s gain matrix and P is the covariance matrix of the estimated state variables. 
 

3.2. The Particle Filter 
 

The Particle Filter Method is a Monte Carlo technique for solution of the state estimation problem, where the main 
idea is to represent the required posterior density function by a set of random samples with associated weights and to 
compute the estimates based on these samples and weights (Maybeck, 1979, Carpenter et al., 1999, Doucet et al., 2000, 
Arulampalam et al., 2001, Kaipio and Somersalo, 2004, Andrieu et al., 2004, Scott and McCann, 2005, Del Moral et 
al., 2006, Del Moral et al., 2007, Johansen and Doucet, 2008, Orlande et al. 2008). In this study, we use the so-called 
Sequential Importance Resampling (SIR) algorithm for the particle filter, which includes a resampling step at each time 
instant, as described in (Arulampalam et al., 2001, Orlande et al. 2008). The SIR algorithm makes use of an importance 
density, which is a density proposed to represent another one that cannot be exactly computed. Then, samples are drawn 
from the importance density instead of the actual density. 

Let { }0: , 0, ,xi
k i N= ⋯  be the particles with associated weights { }, 0, ,w i

k i N= ⋯ and { }0: , 0, ,x xk j j k= = ⋯  be the 

set of all states up to kt , where N is the number of particles. The weights are normalized, so that 
1

1
N

i
k

i

w
=

=∑ . Then, the 

posterior density at kt  can be discretely approximated by: 

( ) ( )0: 1: 1 0: 0:
1

x z x x
N

i i
k k k k k

i

wπ δ−
=

≈ −∑  (8) 

where ( ).δ  is the Dirac delta function. By taking hypotheses (3.a-c) into account, the posterior density in Eq. (8) can be 

written as (Arulampalam et al., 2001): 

( ) ( )1: 1
1

x z x x
N

i i
k k k k k

i

wπ δ−
=

≈ −∑                                                                                                                                                 (9) 

A common problem with the SIS particle filter is the degeneracy phenomenon, where after a few states all but one 
particle may have negligible weight. The degeneracy implies that a large computational effort is devoted to updating 
particles whose contribution to the approximation of the posterior density function is almost zero. This problem can be 
overcome by increasing the number of particles, or more efficiently by appropriately selecting the importance density as 

the prior density ( )1x xi
k kπ − .  In addition, the use of the resampling technique is recommended to avoid the degeneracy 

of the particles. 

Resampling involves a mapping of the random measure { },wxi i
k k into a random measure { }* 1,xi

k N − with uniform 

weights. It can be performed if the number of effective particles with large weights falls below a certain threshold 
number. Alternatively, resampling can also be applied indistinctively at every instantkt , as in the Sampling Importance 

Resampling (SIR) algorithm described in (Arulampalam et al., 2001). This algorithm can be summarized in the steps 
presented in Table 3, as applied to the system evolution from 1kt −  to kt  (Arulampalam et al., 2001). 

Although the resampling step reduces the effects of the degeneracy problem, it may lead to a loss of diversity and 
the resultant sample can contain many repeated particles. This problem, known as sample impoverishment, can be 
severe in the case of small process noise. In this case, all particles collapse to a single particle within few instants kt  

(Arulampalam et al., 2001, Kaipio and Somersalo, 2004). Another drawback of the particle filter is related to the large 
computational cost due to the Monte Carlo method, which may limit its application only to fast computing problems. 
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Table 3 – Sampling Importance Resampling Algorithm 

Step 1 

For 1, ,i N= ⋯  draw new particles xi
k  from the prior density ( )1x xi

k kπ − and then use the 

likelihood density to calculate the correspondent weights ( )z xi i
k k kw π= . 

Step 2 

Calculate the total weight 
1

N
i

w k
i

T w
=

=∑  and then normalize the particle weights, that is, for 

1, ,i N= ⋯  let 1i i
k w kw T w−= . 

Step 3 
Resample the particles as follows : 
Construct the cumulative sum of weights (CSW) by computing 1

i
i i kc c w−= +  for 1, ,i N= ⋯ , 

with 0 0c = . 

Let 1i =  and draw a starting point 1u  from the uniform distribution 10,U N −    

For 1, ,j N= ⋯  

       Move along the CSW by making ( )1
1 1ju u N j−= + −                                                    

       While j iu c>  make 1i i= + . 

        Assign sample j i
k kx x=  

        Assign sample 1j
kw N −=  

 
 
 

4. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
 

The physical problem in this work considers a critical operational condition involving a pipeline shutdown situation. 
The problem consists of a pipeline cross-section represented by a circular domain filled with a stagnant fluid and 
bounded by a constant thickness pipe wall (Jamaluddin et al., 1991, Su and Cerqueira, 2001, Escobedo et al., 2006). 
The fluid is considered as homogeneous, isotropic and with constant thermal properties. The idealized pipeline will be 
treated here with an unsteady heat conduction problem in a single medium, thus not taking into account the pipe wall. 
By considering axial symmetry, the dimensionless formulation of this heat conduction problem in cylindrical 
coordinates is given by 
 

( ) ( ) ( )2

2

, , ,1R R R

R RR

θ τ θ τ θ τ
τ

∂ ∂ ∂
= +

∂ ∂∂
 0 1 , 0R τ≤ < >  (10.a) 

 

( ) ( ),
, 0

R
Bi R

R

θ τ
θ τ

∂
+ =

∂
 1 , 0R τ= >  (10.b) 

 

( ),0 1Rθ =  0 1 , 0R τ≤ < =  (10.c) 

 
where the dimensionless groups were defined as 
 

( ) ( )
( )

,
,

,0

T r t T
R

T r T
θ τ ∞

∞

−
=

−
  (11.a) 

2*

t

R

ατ =   (11.b) 

*

r
R

R
=   (11.c) 

*h R
Bi

k
=   (11.d) 
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Here, T∞  is the surrounding environment temperature, h is the convective heat transfer coefficient, k is the thermal 

conductivity coefficient, *R  is the external radius and Bi is the Biot number. 
The solution for such a mathematical model can be obtained with finite-differences, thus resulting in the following 

linear system of algebraic equations (Ozisik, 1993):  
 

1
Θ FΘ Sk k+ = +  (12) 

 

where, 

1

Θ

N

Θ 
 
 
 =
 
 
 Θ 

⋮  

( )

( )

( )

1 4 4

1 2
2 2

1 2
2( 1) 2( 1)

2

F

B B

B B
B B B

B B
B B B

N N

B C

− 
 
    − − +       
 
 =  
 
    

− − +    − −    
  

⋱ ⋱ ⋱

⋱ ⋱ ⋱
 

0

0

S
 
 =  
  

⋮  
2

B
R

τ∆=
∆

 1 2 2C
R B Bi

B RBiB
N

∆ = − − ∆ − 
 

 

 

Here, N is the number of internal nodes in the finite-difference solution, F is an N x N coefficient matrix, Θ  is a 
temperature vector of order N x 1 and S is a known vector of order N x 1. 
 
5. RESULTS AND DISCUSSIONS 
 

We now present the results obtained for the state estimation problem under analysis, by using simulated 
experiments. The simulated measurements contain additive, uncorrelated, Gaussian errors, with constant standard 
deviation. Two test cases are examined below, involving different standard deviations for the measurement errors, 
namely: (i) Test case 1 with standard deviation of 1oC; and (ii) Test case 2 with standard deviation of 5oC.  It is assumed 
that the simulated measurements are taken with a sensor located at the outer boundary surface, that is, at R = 1.0. Initial 
temperature of the oil was uniform at 80oC and the surrounding temperature was T∞  = 4oC. The state variables to be 

estimated are the transient temperatures inside the pipeline cross section at the equidistant finite difference nodes. 
For test case 1, we simulate transient measured temperatures containing Gaussian errors with standard deviation of 

1oC and compare the exact temperature (obtained with an analytic solution with separation of variables, which is 
omitted here for the sake of brevity), measured and predicted temperatures at positions R = 0 and R = 1.0. The predicted 
temperatures were obtained with the Kalman filter and with the particle filter (implemented in accordance with the SIR 
algorithm described above). Twenty particles were used for each state variable in the particle filter. 

Figures 2.a,b, and 3.a,b present the results obtained with the Kalman filter and the particle filter, respectively, for a 
situation involving a standard deviation of the evolution model errors of 0.5oC. These figures show an excellent 
agreement between predicted and exact temperatures, as a result of the small errors in the evolution and observation 
models.  
   

  
 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 2. - Standard deviation for the evolution model errors of 0.5oC – Kalman filter – Test Case 1 
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 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 3. - Standard deviation for the evolution model errors of 0.5oC – Particle filter– Test Case 1 
 
We now address the solution for a case involving a standard deviation of evolution model errors of 5oC. The results 

obtained with this case are presented in figures 4.a,b and 5.a,b for the Kalman and particle filters, respectively. Note in 
these figures that the predictions tend to follow the measurements instead of the evolution model at R = 1.0, because of 
the large evolution model errors. On the other hand, the predictions are in excellent agreement with the exact 
temperatures at positions where no measurements are taken, such as at R = 0.  

 

  
 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 4. - Standard deviation for the evolution model errors of 5oC – Kalman filter - Test Case 1 
 

  
 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 5. - Standard deviation for the evolution model errors of 5oC – Particle filter with re-sampling - Test Case 1 
 

 
A similar analysis is now made for test case 2, where the simulated measured temperatures contain errors with 

standard deviation of 5oC. Figures 6.a,b and 7.a,b present the results obtained with a standard deviation of the evolution 
model errors of 1oC, for the Kalman and particle filters, respectively. These figures show that, despite the larger 
measurement errors, the two Bayesian solution techniques examined in this work are capable of accurately predicting 
the temperatures inside the domain of interest, even at points quite distant from the measurement locations. A 
comparison of figures 6.a,b and 7.a,b reveals that the particle filter provided more accurate estimates than the Kalman 
filter for this case, at R = 0 and R = 1.0. Similar results were obtained with larger errors in the evolution model, as 
illustrated by figures 8.a,b and 9.a,b. These figures show the predicted and exact temperatures for a standard deviation 
of the evolution model of 5oC. 
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 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 6. - Standard deviation for the evolution model errors of 1oC – Kalman filter – Test Case 2 
 

  
 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 7. - Standard deviation for the evolution model errors of 1oC – Particle filter – Test Case 2 
     

  
 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 8. - Standard deviation for the evolution model errors of 5oC – Kalman filter - Test Case 2 
 

  

 (a)  Transient temperatures at R=1 (b)  Transient temperatures at R=0 

Figure 9. - Standard deviation for the evolution model errors of 5oC – Particle filter with re-sampling - Test Case 2 
 
Figures 10.a-c were prepared in order to illustrate the capabilities of the Bayesian filters as a prediction tool for the 

temperature field in a pipeline cross-section from limited temperature data available at this surface. These figures show 
the exact temperature field, as well as those predicted with the Kalman and particle filters, respectively, at a specific 
dimensionless time. In the case presented in figures 10.a-c, the standard deviation for the measurement errors and the 
standard deviation for the evolution model errors are both of 5oC. 
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(a) Exact temperature field (b) Predicted temperature field by 

Kalman filter 
(c) Predicted temperature field by 

particle filter 
Figure 10. Temperature field inside the pipeline predicted with Bayesian filters 

 
 
6. CONCLUSIONS 
 

The objective of this work was to apply Bayesian filters to the estimation of the transient temperature field inside a 
pipeline, by using limited temperature data available at its outer surface. The state estimation problem under analysis 
was solved with the Kalman filter and with the particle filter, for linear evolution and observation models, with additive 
and uncorrelated Gaussian noises. The Kalman filter and the particle filter provided results of similar accuracy for a test 
case involving measurement errors of small magnitude. On the other hand, the predictions obtained with the particle 
filter are in much better agreement with the exact temperatures than those obtained with the Kalman filter, when the 
measurement errors are large.   
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