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Abstract. This paper shows how improved lumped approximation techniques can be employed for calculating pressure
gradients in laminar flows through polygonal cross-section ducts. The adopted methodology consists in reducing the
number of spatial dimensions in the governing equations with approximation rules provided by the Coupled Integral
Equations Approach (C.I.E.A.), significantly diminishing the computational effort. The transformed system studied in this
work can be directly integrated yielding analytical solutions for the averaged velocity and friction factor. The results of the
simplified formulations are compared with solutions to the complete problem (without approximations) and a reasonable
agreement is observed. An error analysis of the results indicates regions for applicability of the methodology where
accuracy requirements can be maintained. Based on a comparison of the results with solutions previously available in
the literature, an analysis of errors leads us to regions of applicability of the solution, where the accuracy requirements
can be maintained.
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1. NOMENCLATURE

Hα,β Hermite approximation;
a, b, c geometric parameters in cross-section domain;
z, y cross-section variables;
x axial variable;
z1 function for left boundary;
Y , Z dimensionless problem variables;
Γ dimensionless function for left boundary;
P hydrostatic pressure;
u axial velocity;
ū cross-sectional averaged velocity;
U dimensionless axial velocity;
K aspect ratio;

GP dimensionless pressure gradient;
f Fanning’s friction-factor;
DH dimensionless hydraulic diameter;
k∗j , h∗j boundary condition parameters.
Greek Symbols
α, β, ν Hermite approximation parameters;
ξ, η dimensionless boundary parameters;
µ dynamic viscosity;
ζ1, ζ2, ζ3 solution constants.
Subscripts
i Hermite approximation parameter;

2. INTRODUCTION

For centuries, analytical methods were the only solution available for heat and fluid flow problems. After the in-
troduction of computers, numerical methods greatly evolved and its widespread usage became inevitable. Nowadays,
with the availability of closed-packages for solving engineering problems (which are mostly based on numerical tech-
niques), analytical methods became old-fashioned, and on several occasions numerical techniques are used for problems
that posses analytical solutions. Nevertheless, analytical solutions still play a crucial role in the development of science
and engineering, and its relevance should not be overlooked.

The approximation of an integral by a linear combination of the integrand values and its derivatives at the integration
limits, was originally developed by Hermite (1878) and first presented by Menning, Auerbach et al. (1983). They were
the first to use this two-point approach, deriving it in a fully differential form called Hα,β . It was shown that the already
known Obreschkoff formulae didn’t present any new features in relation to the Hα,β method, which generated more
accurate solutions to linear ODE systems (initial-value and boundary-value problems) compared to other methods.

Such approximations may simplify the problem at hand to such an extent that even analytical methods can be used.
Nevertheless, the error involved in approximations should be controlled for maintaining precision requirements. One
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technique that take this into account is the Coupled Integral Equations Approach, which is based on the above cited
literature. This method was used in a variety of problems such as drying (Dantas, Orlande et al., 2007), ablation (Ruperti,
Cotta et al., 2004), fins (Aparecido and Cotta, 1989), hyperbolic heat conduction (Reis, Macêdo et al., 2000), radiative
cooling (Su, 2004), conduction with temperature-dependent conductivity (Su, Tan et al., 2009) and heat exchangers (Neto
and Cotta, 1993), besides the solutions to diffusion problems obtained by Corrêa and Cotta (1998).

This paper presents an approximate analytical methodology based on the Coupled Integral Equations Approach for
solving steady laminar flow in irregular geometries and ultimately obtaining the friction factor. Simulation results for
different polygonal cross-section ducts, including rectangular, trapezoidal and hexagonal geometries are carried out. Four
different approximation cases are employed and the results are compared with previously published data. An error analysis
of the results is carried out and used to guide the selection of which approximation should be used in order to minimize
the error for each problem.

3. HERMITE APPROXIMATION

The basis for the Coupled Integral Equations Approach (CIEA) is the Hermite approximation of an integral, denoted,
Hα,β , which is given by the general expression:∫ xi

xi−1

f(x)dx =
α∑
ν=0

cν(α, β)hν+1
i f (ν)(xi−1) +

β∑
ν=0

cν(β, α)(−1)νhν+1
i f (ν)(xi) + Errorα,β (1)

where,

hi = xi − xi−1, cν(α, β) =
(α+ 1)!(α+ β − ν + 1)!

(ν + 1)!(α− ν)!(α+ β + 2)!
(2)

and f(x) and its derivatives f (ν)(x) are defined for all x ∈ [xi−1, xi]. It is assumed that f (ν)(xi−1) = f
(ν)
i−1 for ν =

0, 1, 2, . . . , α and f (ν)(xi) = f
(ν)
i for ν = 0, 1, 2, . . . , β.

This integration formula can provide different approximation levels, from the classical lumped system analysis to im-
proved lumped-differential formulations. A detailed error analysis of the application of the CIEA to diffusion problems
using H0,0, H0,1, H1,0, and H1,1 Hermite approximations was carried out in (Alves, Sphaier et al., 2000). Since approxi-
mations of order higher than H1,1 involve derivatives of order higher than one, these are avoided for the sake of simplicity
of the methodology. Hence, only the two different approximations below are considered:

H0,0 ⇒
∫ h

0

f(x)dx ≈ 1
2
h(f(0) + f(h)), (3)

H1,1 ⇒
∫ h

0

f(x)dx ≈ 1
2
h(f(0) + f(h)) +

1
12
h2(f ′(0)− f ′(h)), (4)

which correspond to the well known trapezoidal and corrected trapezoidal integration rules, respectively.

4. LAMINAR FLOW IN POLYGONAL CROSS-SECTION DUCTS

In this section, the integral approximation rules (3,4) are applied to fully-developed laminar flow in straight ducts
with polygonal cross-sections, allowing expressions for the friction-factor in different geometries to be obtained. The
tested cross-section geometries were rectangle, trapezoid and hexagon. Figure 1 displays the general problem domain
with the adopted geometric parameters. The function z1(y) describes the right boundary between y = a and y = c. The
rectangular and trapezoidal geometries are part of a group where a Dirichlet boundary condition is prescribed in y = 0
due to the no slip restriction. In the remaining case there is a Neumann boundary condition at y = 0 because of the
symmetry about the z axis.

The dimensionless fluid-flow problem is the geometry considered is given by the following equations:

∂2U

∂Y 2
+K2 ∂

2U

∂Z2
= GP , for 0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1, (5)

h∗j
∂U

∂Y
+ k∗j U = 0, for Y = 0 and 0 ≤ Z ≤ 1, (6)

U = 0, for Y = 1 and 0 ≤ Z ≤ 1, (7)
∂U

∂Z
= 0, for Z = 0 and 0 ≤ Y ≤ 1, (8)

U = 0, for Z = Z1(Y ) and 0 ≤ Y ≤ 1, (9)
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Figure 1. Problem domain

where the boundary condition at y = 0 is written in a generalized form, according to the parameters h∗j and k∗j . The
current geometric group will depend on the value of j: j = 1 for the first geometric group (trapezoid and rectangle)
and j = 2, for the second (hexagon). Hence, the values for the boundary condition parameters are h∗1 = k∗2 = 0 and
h∗2 = k∗1 = 1.

The involved dimensionless groups are given by:

Y =
y

b
, Z =

z

a
, U =

u

ū
, K =

b

a
, GP =

b2

µ ū

dP
dx

, (10)

Where U = U(Y,Z) and Γ(Y ) = ξ Y + η is the dimensionless form of z1(y). Expressions for ξ and η are easily
obtained, giving:

ξ = −K cot(ψ) and η = 1 +K cot(ψ), (11)

The expression of Fanning’s friction-factor can be readily expressed in terms of the dimensionless pressure gradient as:

f Re = −GP
2
D2
H

b2
, (12)

in which GP is the dimensionless pressure gradient, DH is the hydraulic diameter and b is a geometric parameter. The
hydraulic diameter depends on the type of the duct cross-section geometry, so we express it in a generalized form:

D2
H

b2
=

(
4 + 2K cot(ψ)

1 +K csc(ψ) + k∗j (1 +K cot(ψ))

)2

, (13)

where the Reynolds number is based on the hydraulic diameter. The average velocity in the horizontal direction is
defined as:

Uav(Y ) =

∫ Z1

0
U(Y, Z) dZ
ξ Y + η

. (14)

4.1 Integration and approximation

With little algebraic manipulation, the integration of equations (5,6,7) within 0 ≤ Z ≤ Γ followed by the substitution
of equations (8,9) and (14), yields:

d2Uav
dY 2

+
2 ξ

ξ Y + η

dUav
dY

+
(K2 + ξ2)
ξ Y + η

∂U

∂Z

∣∣∣∣
Z=Γ

= GP , for 0 ≤ Y ≤ 1, (15)

η h∗j
dUav
dY

+ (ξ h∗j + η k∗j )Uav = 0, at Y = 0, (16)

Uav = 0, at Y = 1, (17)
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where the following relation between the Y - and Z-derivatives of U at Z = Γ, obtained from the boundary condition at
this location (9), was used for simplification:

∂U

∂Y

∣∣∣∣
Z=Γ

= − ξ ∂U
∂Z

∣∣∣∣
Z=Γ

. (18)

Equations (15-17) are an exact form of system (5-9) transformed to eliminate the independent variable Z, i.e. no
approximations have been used. In order to solve equations (15-17) the derivatives of the two-dimensional velocity
field U at Z = Γ(Y ) must be expressed in terms of the Z-averaged velocity, Uav(Y ). At this point no further exact
transformations can be of assistance, and the need for an approximation rule becomes clear. Observing equations (15) and
(18), the CIEA methodology should be applied to generate relations between the unknown derivatives (∂U/∂Z|Z=Γ and
∂U/∂Y |Z=Γ) and the averaged velocity Uav(Y ); however, two different approximation alternatives arise:

1. Apply the CIEA using Hermite formulas for the integrals of U(Y, Z) and ∂U/∂Z.

2. Apply the CIEA using Hermite formulas for the integrals of U(Y, Z) and ∂U/∂Y .

Although there are no differences between the above alternatives regarding the number of approximations utilized,
different results can be obtained for each case. As it is shown further, using H0,0 or H1,1 formulas for U(Y,Z), together
with H0,0 formulas for the derivatives of U , leads to approximation rules in the following form:

∂U

∂Z

∣∣∣∣
Z=Γ

= −1
ξ

∂U

∂Y

∣∣∣∣
Z=Γ

≈ −γ1
Uav

ξ Y + η
+
γ2

ξ

dUav
dY

, (19)

where γ1 and γ2 are parameters whose values depend on the type of approximation used. These will be determined in the
next section. For rectangular ducts, relation (18) does not hold, and only the first approximation alternative is possible.
For these type of ducts (with ψ = π/2), a general approximation relation without γ2 is obtained:

∂U

∂Z

∣∣∣∣
Z=Γ

≈ −γ1
Uav

ξ Y + η
= −γ1 Uav, (20)

where the second equality reflects the fact that η = 1 and ξ = 0 for rectangular ducts. Using the general approximations
(19,20), the system given by equations (15-17) is solved, yielding:

Uav(Y )
GP

= ζ1 (ξ Y + η)γ3 +χ + ζ2 (ξ Y + η)γ3−χ + ζ3 (ξ Y + η)2, (21)

for ducts with ψ 6= π/2, and the simplified form for rectangular profiles:

Uav(Y )
GP

= ζ1 sinh(K Y
√
γ1) + ζ2 cosh(K Y

√
γ1) + ζ3, (22)

where ζ1, ζ2 are integration constants (depending on the boundary conditions). The other parameters are given by:

γ3 = −1
2

(
1 +

γ2

ξ2
(K2 + ξ2)

)
= −1

4
(1 + 2 γ2 + cos(2ψ)) sec(ψ)2, (23)

ζ3 =
−1

K2 γ1 + (4 γ3 − 4 + γ1) ξ2
=

sin2(ψ)
K2 (3− γ1 + 2 γ2 + 3 cos(2ψ))

, (24)

χ =

√
γ1

(
1 +

K2

ξ

)
+ γ2

3 =
√
γ1 sec(ψ) + γ2

3 . (25)

For the rectangular profile (ψ = π/2):

Uav(Y )
GP

= ζ3

(
1−

cosh(K (Y − 1/2)
√
γ1)

cosh(K γ1/2)

)
, with ζ3 = − 1

K2γ1
. (26)

Using the definition of the cross-sectional averaged velocity:

1
A

∫ b

0

∫ z1(y)

0

u dz dy = ū, with A =
(a + c)

2
b, (27)
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one can write

1
A∗

∫ 1

0

Uav(Y ) dY = 1 where A∗ =
1 + η

2
, (28)

and hence the dimensionless pressure gradient can be calculated from:

GP =
(

1
A∗

∫ 1

0

Uav
GP

dY
)−1

= A∗ ξ

(∫ ξ+η

η

Uav
GP

dΓ

)−1

, (29)

where a change of variable was performed to facilitate integration, which yields:

A∗

Gp
=

ζ2ξ

γ3 − χ+ 1
(
1− ηγ3−χ+1

)
+

ζ1ξ

γ3 + χ+ 1
(
1− ηγ3+χ+1

)
+

1
3
ζ3
(
1− η3

)
ξ. (30)

Once GP has been calculated, the friction factor is readily obtained from equation (12). This results in an expression
for the friction-factor parameterized by the geometric relations (K and ψ), the geometry-type parameters (k∗j and h∗j ) and
by parameters that depend on the type of approximation (γ1 and γ2).

For rectangular ducts, a general expression, valid for two levels of approximations (indicated by the value of γ1), is
given by:

f Re =
8K3 γ

3/2
1

(K + 2)2
(
K
√
γ1 − 2 tanh

(
1
2 K
√
γ1

)) . (31)

5. COUPLED INTEGRAL EQUATIONS APPROACH

Now that a general expression for the friction factor is available, four different approximation schemes are tested, each
leading to different values for the parameters γ1 and γ2. For the sake of simplicity, no Hermite approximations of order
higher than H1,1 are used and the H1,1 approximation is used solely for the integral of U(Y, Z).

5.1 First case - H0,0/H0,0, alternative 1

In this case the H0,0 approximation is used to yield expressions for the integrals (within the horizontal coordinate) of
the velocity profile and its derivative with respect to Z:∫ Γ(Y )

0

U(Y,Z) dZ ≈ 1
2

(ξ Y + η) (U(Y, 0) + U(Y,Γ(Y ))), (32)∫ Γ(Y )

0

∂U

∂Z
dZ ≈ 1

2
(ξ Y + η)

(
∂U

∂Z

∣∣∣∣
Z=0

+
∂U

∂Z

∣∣∣∣
Z=Γ

)
. (33)

The above equations are solved for the unknown potential and derivative, substituting the boundary information and
the definition of average potential, to give:

∂U

∂Z

∣∣∣∣
Z=Γ

= − 4Uav(Y )
(ξ Y + η)

and U(Y, 0) = 2Uav(Y ), (34)

which leads to the following values for the γ-parameters:

γ1 = 4, γ2 = 0. (35)

5.2 Second case - H0,0/H0,0, alternative 2

In this case the H0,0 approximation is again used to yield expressions for the integral of the velocity profile (32).
However, instead of approximating the integral of the velocity’s Z-derivative, the H0,0 rule is used with the Y -derivative:∫ Z1(Y )

0

∂U

∂Y
dZ ≈ 1

2
(ξ Y + η)

(
∂U

∂Y

∣∣∣∣
Z=0

+
∂U

∂Y

∣∣∣∣
Z=Γ(Y )

)
(36)

Solving the above equation, together with (32), for the unknown potential and its derivative, and substituting the
boundary information yields:

∂U

∂Y

∣∣∣∣
Z=Γ(Y )

= 2 ξ
Uav(Y )
ξ Y + η

+ 2
dUav
dY

− ∂U

∂Y

∣∣∣∣
Z=0

, (37)

U(Y, 0) = 2Uav(Y ), (38)
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Simplifying gives:

∂U

∂Y

∣∣∣∣
Z=Γ(Y )

= 2 ξ
Uav(Y )
ξ Y + η

(39)

which results in the following values for γ1 and γ2:

γ1 = 2, γ2 = 0. (40)

5.3 Third case - H1,1/H0,0, alternative 1

In this case the H0,0 approximation is used to yield an expression for the integral of the velocity’s Z-derivative (33),
and, for the integral of the velocity profile, the H1,1 approximation is used as follows:∫ Z1(Y )

0

U(Y,Z) dZ ≈ 1
2

(ξ Y + η) (U(Y, 0) + U(Y,Γ)) +
1
12

(ξ Y + η)2

(
∂U

∂Z

∣∣∣∣
Z=0

− ∂U

∂Z

∣∣∣∣
Z=Γ

)
(41)

The above equation, together with (33), is solved for the unknown potential and its derivative to give:

∂U

∂Z

∣∣∣∣
Z=Γ(Y )

= − 3Uav(Y )
(ξ Y + η)

and U(Y, 0) =
3
2
Uav(Y ) (42)

leading to the following values for the γ-parameters:

γ1 = 3, γ2 = 0, (43)

5.4 Fourth case - H1,1/H0,0, alternative 2

In this case the H1,1 approximation is again used to yield expressions for the integral of the velocity profile, equation
(41). However, now the H0,0 rule is applied to the integral of the Y -derivative (as in the second case, equation (36)).
Solving equations (33 , 41) and (36) for the unknown potential and its derivative, the following expressions are found:

∂U

∂Y

∣∣∣∣
Z=Γ

= 2 ξ
Uav(Y )
ξ Y + η

+ 2
dUav
dY

− ∂U

∂Y

∣∣∣∣
Z=0

(44)

U(Y, 0) =
3
2
Uav(Y ) (45)

Simplifying gives:

∂U

∂Y

∣∣∣∣
Z=Γ

= 2 ξ
Uav(Y )
ξ Y + η

+
1
2

dUav
dY

(46)

and the following values for the approximation-type parameters are obtained:

γ1 = 2, γ2 = − 1
2

(47)

6. RESULTS AND DISCUSSION

Now that the solution methodology has been presented, friction factor results for different cross-section geometries
are presented.

6.1 Rectangle

For rectangular ducts, the following explicit expressions for the friction-factor are obtained:

f Re =
32K3

(K + 2)2 (K − tanh(K))
, for case 1, (48)

f Re =
24K3

√
3

(K + 2)2
(
K
√

3− 2 tanh
(
K
2

√
3
)) , for case 3. (49)

A correlation obtained from an analytical solution to these types of ducts is given by (Shah and London, 1978):

f Re = 24(1− 0.2537K5 + 0.9564K4 − 1.7012K3 + 1.9467K2 − 1.3553K) (50)

The results calculated for the two types of approximations are presented in table 1. As can be seen, case 3 (H0,0/H1,1)
presents better results than case 1 (H0,0/H0,0), having a maximum relative error of 7% for K = 0.405. It is clear that
the error is not uniform with K, and its average value is 6.1% for case 1 and 3.6% for case 3. Note also, that the solution
converges to the problem of laminar flow between parallel plates when the aspect ratio approaches zero.
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Table 1. Friction-factor in rectangular duct for different aspect ratios.

case 1 case 3
K f Re ε(%) f Re ε(%) eq. (50)

0.005 23.8807 0.1 23.8806 0.1 23.8385
0.105 21.7610 3 21.7371 3 21.0552
0.205 20.0767 6 19.9938 5 18.9820
0.305 18.7408 7 18.5729 6 17.4495
0.405 17.6856 8 17.4137 7 16.3288
0.505 16.8575 9 16.4682 6 15.5234
0.605 16.2144 8 15.6981 5 14.9624
0.705 15.7225 8 15.0730 3 14.5931
0.805 15.3545 7 14.5679 1 14.3738
0.905 15.0885 6 14.1629 1 14.2663
1.005 14.9065 5 13.8413 3 14.2286

6.2 Trapezoid

The results for a trapezoidal cross-section duct are presented in table 2, for various aspect ratios and trapezoid angles,
using all four approximation alternatives. In order to analyze the trapezoidal profiled duct, exact solutions (Aparecido,
1988) using the Generalized Integral Transform Technique (GITT) were used for comparisons. It is clear that for the
first approximation alternative (cases 1 and 3), the H0,0/H1,1 approximations yield better results than its H0,0/H0,0

counterpart. However, the opposite trend is generally seen for the second approximation alternative (cases 2 and 4), with
H0,0/H0,0 outperforming H0,0/H1,1. Another important observation that must be made concerns the approximation
alternatives. It can be seen that case 1 gives better results for smaller angles than case 2, and that this behavior is inverted
for larger angles. The same can be seen while comparing cases 3 and 4. These findings indicate that the approximation
alternative 1 is better for smaller angles, while alternative 2 is better suited for larger angles.

6.3 Hexagon

The results for hexagonal profiles are calculated for different angles and aspect ratios and are presented in table 3,
which includes the GITT results presented by Aparecido (1988). As can be seen, in general, for all cases, the error
increases with increasing aspect ratio K. For the first approximation alternative (cases 1 and 3) the error increases with
decreasing angle, whereas for the second alternative a different behavior is seen. For case 2 the error is minimum for
moderate values of ψ (30◦ and 45◦) and is larger for smaller and larger values. A similar behavior is observed for case 4;
however the error is smaller for a larger range of ψ (from 30◦ to 60◦). Comparing the different levels of approximation
(H0,0/H0,0 andH1,1/H0,0) for a same approximation alternative, one notes, for the first alternative, thatH1,1/H0,0 (case
3) gives better results than H0,0/H0,0 (case 1). Nevertheless a different trend is seen for the second alternative. In these
cases the H1,1/H0,0 (case 4) gives better results for moderate angles, but it is the H0,0/H0,0 (case 2) which yields better
results for larger and smaller values of ψ. Analyzing the presented results one can also note that alternative 2 (cases 2 and
4) is generally better for smaller angles.

7. CONCLUSIONS

This paper presented an alternative approach for calculating friction-factor in steady laminar fluid flow in ducts of
different polygonal cross-sections (rectangular, trapezoidal and hexagonal). An approximate analytical methodology,
based on the coupled integral equations approach is used. Closed form analytical expressions are obtained for Fanning’s
friction factor, for various combination of polygon aspect ratio and angle. Results for four different approximation cases
are presented, consisting of a combination of two levels of approximations and two approximation alternatives. The
data is compared with previously published results, and an error analysis shows that some cases have better performance
than others; however this is not uniformly observed. Because of the heterogeneity of the error among the different
approximations, an optimum approximation for all cases cannot be determined from this study. Nevertheless, if future
research is aimed at obtaining error estimates for different approximations, a rule for selecting the proper approximation
type could be devised.
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Table 2. Friction-factor in trapezoidal duct.

case 1 case 2 case 3 case 4
K f Re ε(%) f Re ε(%) f Re ε(%) f Re ε(%) GITT

ψ = 85◦ 0.01 23.7619 0.2 23.7615 0.2 23.7617 0.2 23.7627 0.2 23.8023
0.10 21.8568 3 21.8133 3 21.8351 3 21.9287 4 21.1842
0.25 19.4607 6 19.2267 5 19.3437 6 19.8378 8 18.2987
0.50 16.9604 8 16.2152 3 16.5879 6 18.0678 15 15.6759
0.75 15.6248 7 14.2595 2 14.9425 3 17.4199 20 14.5763
1.00 14.9778 5 12.9652 9 13.9726 2 17.2490 21 14.2351

ψ = 75◦ 0.01 23.7548 0.2 23.7543 0.2 23.7545 0.2 23.7544 0.2 23.7908
0.10 21.8147 3 21.7694 3 21.7920 3 21.7797 3 21.1389
0.25 19.4312 6 19.1935 5 19.3124 5 19.2473 5 18.3152
0.50 17.0078 8 16.2765 3 16.6423 5 16.4396 4 15.8047
0.75 15.7265 7 14.4223 2 15.0748 3 14.7069 0.1 14.6971
1.00 15.0856 6 13.2039 7 14.1458 1 13.8887 3 14.2519

ψ = 60◦ 0.01 23.7273 0.1 23.7267 0.1 23.7270 0.1 23.7267 0.1 23.7428
0.10 21.6258 4 21.5716 3 21.5987 3 21.5716 3 20.8917
0.25 19.1839 6 18.9133 5 19.0486 5 18.9133 5 18.0585
0.50 16.8688 7 16.0872 3 16.4782 5 16.0872 3 15.6922
0.75 15.7185 7 14.3883 2 15.0540 3 14.3883 2 14.6376
1.00 15.1606 7 13.3094 6 14.2365 1 13.3094 6 14.1516

ψ = 45◦ 0.01 23.6677 0.1 23.6667 0.1 23.6672 0.1 23.6667 0.1 23.6405
0.10 21.2200 4 21.1435 4 21.1817 4 21.1403 4 20.3550
0.25 18.6350 7 18.2798 5 18.4574 6 18.2650 5 17.4212
0.50 16.4710 8 15.5285 2 16.0000 5 15.4898 2 15.2127
0.75 15.5321 9 14.0201 2 14.7772 4 13.9590 2 14.2711
1.00 15.1344 9 13.1213 5 14.1305 2 13.0410 6 13.8223

ψ = 30◦ 0.01 23.5348 0.5 23.5330 0.5 23.5339 0.5 23.5329 0.5 23.4211
0.10 20.3985 6 20.2619 5 20.3302 5 20.2543 5 19.3092
0.25 17.6413 8 17.0784 5 17.3599 7 17.0473 5 16.2724
0.50 15.8261 10 14.5117 1 15.1698 6 14.4402 1 14.3466
0.75 15.2491 12 13.3087 2 14.2821 5 13.2045 3 13.6029
1.00 15.1011 14 12.6674 4 13.8911 5 12.5381 5 13.2552

ψ = 15◦ 0.01 23.1283 1 23.1216 1 23.1249 1 23.1212 1 22.7967
0.10 18.5085 9 18.1293 6 18.3189 7 18.1063 6 17.0889
0.25 16.0089 12 14.7984 3 15.4045 7 14.7258 3 14.3548
0.50 15.2016 16 12.9625 1 14.0881 8 12.8304 2 13.0962
0.75 15.2249 20 12.3470 3 13.8010 9 12.1788 4 12.6943
1.00 15.3754 23 12.0920 3 13.7589 10 11.9011 5 12.5201

ψ = 1◦ 0.01 17.3469 10 16.7007 6 17.0239 8 16.6607 6 15.7693
0.10 15.6402 28 11.9973 2 13.8601 14 11.7794 3 12.1891
0.25 16.0752 34 11.9489 1 14.0864 17 11.7014 3 12.0326
0.50 16.1949 35 11.9768 0.2 14.1702 18 11.7233 2 12.0051
0.75 16.2221 35 11.9873 0.1 14.1912 18 11.7327 2 12.0026
1.00 16.2323 35 11.9919 0.1 14.1993 18 11.7370 2 12.0120
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Table 3. Friction-factor in hexagonal duct.

case 1 case 2 case 3 case 4
K f Re ε(%) f Re ε(%) f Re ε(%) f Re ε(%) GITT

ψ = 85◦ 0.01 23.5471 1 23.5452 1 23.5462 1 24.0562 1 23.8210
0.05 21.9317 3 21.8879 3 21.9098 3 24.3043 8 22.5700
0.10 20.2911 5 20.1321 6 20.2116 5 24.6516 16 21.3110
0.25 17.1591 7 16.3958 11 16.7776 9 25.7676 39 18.5020
0.50 15.2358 4 13.1472 17 14.1924 11 27.3331 72 15.9030
1.00 15.6000 8 11.0461 24 13.3284 8 28.6500 98 14.4770

ψ = 75◦ 0.01 23.5699 1 23.5678 1 23.5689 1 23.7443 0 23.8450
0.05 22.0433 3 21.9971 3 22.0202 3 22.8135 1 22.6840
0.10 20.5066 5 20.3399 5 20.4233 5 21.8281 1 21.5200
0.25 17.6193 7 16.8335 11 17.2265 9 19.7219 4 18.9230
0.50 15.8800 4 13.7826 16 14.8319 10 17.8267 8 16.4840
1.00 16.1176 8 11.6881 22 13.9054 7 16.3655 10 14.9390

ψ = 60◦ 0.01 23.5788 1 23.5763 1 23.5776 1 23.6777 1 23.8590
0.05 22.1098 3 22.0534 3 22.0816 3 22.5135 1 22.7630
0.10 20.6763 5 20.4761 6 20.5762 5 21.2963 2 21.6690
0.25 18.1459 6 17.2424 10 17.6943 8 18.7451 3 19.2610
0.50 16.8307 1 14.5399 14 15.6857 8 16.4988 3 17.0020
1.00 17.2473 12 12.6915 18 14.9701 3 14.7815 4 15.3990

ψ = 45◦ 0.01 23.5474 1 23.5437 1 23.5455 1 23.6308 1 23.8380
0.05 22.0248 3 21.9430 3 21.9839 3 22.3273 2 22.6990
0.10 20.6338 4 20.3522 6 20.4930 5 21.0156 3 21.5710
0.25 18.4976 4 17.3148 10 17.9063 7 18.4399 4 19.1760
0.50 17.8017 5 15.0296 12 16.4158 3 16.3787 4 17.0070
1.00 18.7002 21 13.6283 12 16.1647 5 14.9594 3 15.4070

ψ = 30◦ 0.01 23.4337 1 23.4264 1 23.4300 1 23.5255 1 23.7510
0.05 21.6729 3 21.5204 4 21.5967 3 21.9336 2 22.3670
0.10 20.2842 4 19.7892 6 20.0367 5 20.4608 3 21.0440
0.25 18.7659 2 16.9400 8 17.8531 3 17.9391 3 18.4390
0.50 18.9949 17 15.2260 7 17.1106 5 16.2892 0.1 16.2990
1.00 20.5379 39 14.4446 2 17.4947 18 15.4082 4 14.7870

ψ = 15◦ 0.01 23.0326 2 23.0065 2 23.0196 2 23.1704 1 23.4360
0.05 20.6590 3 20.1941 5 20.4266 4 20.7780 2 21.2240
0.10 19.5118 1 18.2146 6 18.8633 3 19.0308 2 19.3650
0.25 19.5798 19 15.9761 3 17.7781 8 16.9049 3 16.4010
0.50 21.1435 46 15.2428 5 18.1968 25 16.0786 11 14.5230
1.00 23.0054 71 15.2048 13 19.1277 42 15.9264 19 13.4280

ψ = 1◦ 0.01 19.4274 7 17.3171 4 18.3723 2 18.1837 1 18.0730
0.05 22.5146 67 15.4601 15 18.9997 41 16.1875 20 13.4760
0.10 24.1119 92 15.6306 24 19.9119 58 16.2728 29 12.5800
0.25 25.0735 107 15.8767 31 20.5475 69 16.4830 36 12.1320
0.50 25.2841 110 15.9577 33 20.7018 72 16.5599 38 12.0370
1.00 25.3452 111 15.9863 33 20.7490 73 16.5880 38 12.0100
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