
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

A NUMERICAL INVESTIGATION OF INERTIA FLOWS OF 
REGULARIZED HERSCHEL-BULKLEY FLUID VIA A MULTI-FIELD 

STABILIZED METHOD

Cleiton Fonseca, cfonseca@mecanica.ufrgs.br 
Fernando Borges, fborges@mecanica.ufrgs.br 
Sergio Frey, frey@mecanica.ufrgs.br 
Laboratory of Applied and Computational Fluid Mechanics (LAMAC)
Mechanical Engineering Department, UFRGS
Rua Sarmento Leite, 425 – 90059-170 − Porto Alegre, RS, Brazil.

Abstract. The majority of real liquids found in nature behave like non-Newtonian fluids, a fact that makes their study  
of significant importance to various areas of engineering. Among these non-linear liquids, some of them may exhibit  
little or no deformation up to a certain stress level - called the yield stress of the material. The present work aimed to  
simulate viscoplastic fluid flows through an one-to-four abrupt planar expansion via a finite element methodology.  
This work has employed a multi-field mechanical model based on equations of mass conservation and momentum  
balance coupled with the  Herschel-Bulkley  viscoplastic  model,  regularized  by  the Papanastasiou equation.  This  
model has been approximated by a multi-field Galerkin-least-squares-type method. This stabilized method overcomes  
the compatibility conditions involving the finite element sub-spaces for stress-velocity and pressure-velocity - the  
latter known as Babuška-Brezzi condition, allowing in this way the use of equal-order finite element interpolations. In  
order to investigate the influence of how the yield stress, the power-law coefficient, the flow-rate and inertia affect the  
viscoplastic fluid dynamics, the Herschel-Bulkley number has been varied from 0.1 to 100, the power-law coefficient  
from 0.37 to 1.5, the dimension inlet velocity from 2 to 20 and Reynolds number from 1 to 10. All results have proved  
to be in accordance with the viscoplastic literature.

Keywords:  Viscoplastic  fluids;  Herschel-Bulkley  model;  Papanastasiou  regularization,  multi-field  stabilized  
formulations; Galerkin least-squares method.

1. INTRODUCTION 

Many industrial processes of significant relevance for engineering involve flows of liquids which viscosities change 
with the shear  rate  -  the so-called shear-thinning or  shear-thickening non-Newtonian fluids  (Bird  et  al.,  1987).  In 
addition, some of them may show a more complex behavior, presenting a yield stress limit which is responsible for  the 
formation of two distinct material regions (see, for instance,  Barnes (1999) and references therein). In one of them, 
known as the unyielded region, the shear stress level applied to the material lies below its yield limit and consequently 
no-deformation occurs with the material moving as a rigid body. In the other one, called the yielded region, the shear 
stress level lies beyond the yield limit, forcing the material to flow.  Initially called Bingham plastics, nowadays this 
class  of  liquids  is  known as  a  viscoplastic  material.  Paint,  slurries,  pastes,  and  food  products  such  as  margarine, 
mayonnaise and ketchup, are good examples of this material.

In  the  last  decades,  some  constitutive  hypotheses  have  been  introduced  in  a  tentative  to  describe  the  stress-
deformation behavior of those materials and different yield criteria presented. Among them, the Bingham plastic and 
the Herschel-Bulkley fluid are  firstly considered  (Astarita  and Marrucci,  1974).  In  this  article,  the latter  has  been 
studied, a classical three-parameter viscoplastic model which has been already applied to a wide range of real liquids. 
Recently,  Papanastasiou  (1987)  introduced  a  new  constitutive  equation  for  yielding  materials  that  concerns  the 
regularization  of  classical  viscoplastic  models.  This  equation  presents  two important  advantages  in  relation  to  the 
classical viscoplastic models. First, it introduces a numerical parameter to control the exponential growth of the shear 
stress in material regions subjected to very high shear rate values, and it is also valid for both yielded and unyielded 
zones of the material.

Fluid problems involving the flow of non-Newtonian liquids through sudden expansions has been studied for many 
researchers, due to their industrial relevance (see, for instance, Alexandrou, et al., (2001) and Pascal et al., (2001)). In 
particular, for yielding fluids, the investigation of viscoplastic phenomena along those flows brings a broad insight in 
the material rheology. In this work, inertialess flows of Herschel-Bulkley fluids, regularized by Papanastasiou (1987) 
strategy, through an one-to-four planar sudden expansion have been numerically simulated. The employed mechanical 
model considered a multi-field formulation built with continuity and momentum equations coupled with the regularized 
Herschel-Bulkley constitutive equation. This model has been approximated via a stabilized multi-field finite element 
method, based on the Galerkin least-squares  methodology (Franca  and Frey,  1992),  with extra-stress,  velocity and 
pressure fields as primal variables. The method has no need to satisfy the inf-sup conditions arisen from finite element 
sub-spaces for extra-stress, velocity and pressure. Besides, due to the adding of least-squares mesh-dependent terms of 
residual  of  Euler-Lagrangian  equations,  the  method eliminates  spurious  oscillations,  inherent  to  central  difference 
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schemes (Brooks and Hughes, 1982), in high advective-dominated flows. In order to investigated the effect of yield 
stress, shear-thinning and shear-thickening, flow-rate and inertia on the morphology of material yield surfaces,  this 
article undertook a sensibility analysis ranging the Herschel-Bulkley number from 0.1 up to 100, power-law index from 
0.37 to 1.5, dimensionless inlet velocity from 2 to 20 and Reynolds number from 1 to 10. All numerical results have 
confirmed the stability features of the employed stabilized method and were in agreement with related literature.

2. MECHANICAL MODELING

According to mass conservation and momentum balance principles (Astarita and Marrucci, 1974), incompressible 
fluid flows may model by the following system of equations,

div u=0

Dt u=div Tg
   (1)

where u is the fluid velocity,  its density, T the stress tensor and g the gravitational acceleration.

2.1. Viscoplastic constitutive equation

One of the most used viscosity functions employed to fit viscoplastic material data is the Herschel-Bulkley equation. 
It  is a three-rheological-parameter model employing the material  yield stress,  0,  the  consistency index, K, and the 
power-law coefficient, n. The shear stress field predicted by the classical Herschel-Bulkley model may be expressed as

=0K ̇
n if 0

̇=0 if 0

   (2)

where   is  the  magnitude  of  the  shear  stress  tensor,  ,  and ̇ the  magnitude  of  the  strain  rate  tensor, 

D=1 /2 ∇ u ∇ u T  ,

=1 /2tr  2

1 /2    (3)

and

̇=2 tr D2

1/2    (4)

Eq. (2) characterizes two distinct material regions, namely a unyielded zone in which the applied shear stress is less 
than the material yielded limit, <0 – with the material behaving as rigid body – and an yielded one where 0. – with 
the material flowing as a shear-thinning or shear-thickening fluid. Between these two zones, lies a transition surface, 
called yield surface, for which 0.

The classical Herschel-Bulkley viscosity function may be derived from Eq. (2) and the concept of apparent viscosity 
of a generalized Newtonian liquid (GNL),  ̇=/̇ , (Bird et al. , 1987) as follows,

 ̇=
0

̇
K ̇

n−1 if 0

̇=0 if 0

   (5)

However, the classical Herschel-Bulkley model may found some drawback to describe a real viscoplastic material 
due to the discontinuity experimented by the shear stress. In virtue of this limitation, Papanastasiou (1987) proposed a 
regularization of Eq. (2) introducing a numerical parameter m that controls the exponential growth of the shear stress,

=0[1−exp −m ̇]K ̇
n    (6)

where  the  parameter  m has  time  dimension.  Nonetheless,  even  being  of  a  straightforward  computational 
implementation, the regularized model defined by Eq. (6) may not describe a well defined yield surface (=0). From 
this equation, the material unyielded regions are no more rigid body but fluid zones subjected to finite high viscosities

Again, the regularized Herschel-Bulkley viscosity function may be achieved from the GNL apparent viscosity and 
Eq. (6), as follows
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 ̇=
0

̇
[ 1−exp−m ̇ ]K ̇

n−1
   (7)

3. FINITE ELEMENT APPROXIMATION

Starting from the differential system defined by Eq. (1), a multi-field boundary value problem for steady-state flows 
of regularized Herschel-Bulkley fluids (Eq. 7) may be stated as

[∇u ]u∇ p−div= g in 

div u=0 in 

−2 02 tr D2

−1/2 [1−exp −m 2 tr D2


1/2
 ]K 2tr D2


 n−1 /2

D u =0 in 

u=u g on  g

−pI2 02 tr D2

−1 /2 [1−exp−m ˙2tr D2


1/2
 ]K 2 tr D2


n−1 /2

D un=t h on h

   (8)

where  the  variables  ,  p,  u,  D and  g,  were  defined  as  before,  th the  surface  force  and  the  tensor    being 
decomposed as, T+p1. (Astarita and Marrucci, 1974).

3.1. A multi-field stabilized formulation 

The finite element approximation the multi-field problem defined by Eq. (8) were built employing the usual finite 
subspaces for velocity (Vh), pressure (Ph) and stress ( h) fields,

Ph
={q∈C0

∩L0
2
∣p| K∈Rm K , K∈

h}
V h={v∈H 0

1 N∣v| K∈R lK N ,K∈h }
V g

h
={v∈H 1


N∣v |K∈Rl K 

N ,K∈
h ,v=u g on 

h}


h
={S∈C0


NxN

∩L 2
NxN

∣S ij=S ji , i , j=1, N , S | K∈Rm K 
NxN , K∈

h
}

   (9)

where Rk, Ri denote, respectively, polynomial spaces of degree k and l (Ciarlet, 1978).
From finite element subspaces definitions introduced by Eq. (9), a multi-field stabilized formulation for Eq (8) may 

be written as follows: find (h, uh, ph)   h X Vg
h X Ph, such that:

Bh , uh , ph ;Sh ,vh , qh
=F Sh , v h , qh

 ∀Sh , v h , q h
 ∈ 

h
×Vh

×Ph  (10)

where

B  h , ph ,uh ;Sh , qh , v h=2 02 tr D2−1 /2 [1−exp−m 2 tr D21 /2 ]K 2 tr D2n−1/2
−1

∫

 h⋅Sh d

−∫


D u h⋅Sh d∫

[∇ uh]uh⋅v h d−∫


⋅D vhd−∫


p div vh d∫


div uh qh d∫

K

ph q h d

∑
K∈h

∫K
 [∇ uh

]uh
∇ ph

−div  ReK [∇ v h
]uh

∇ qh
−div Sh

d∫
div uh div v h d

2 02 tr D2

−1 /2 [1−exp −m 2 tr D2


1 /2
]K 2 tr D2


n−1/2

  .

.∫
K
2 02 tr D2


−1 /2 [1−exp −m 2 tr D2


1 /2
]K 2 tr D2


n−1/2


−1


h
−D u h⋅ 

⋅2 02 tr D2

−1/2 [1−exp −m 2 tr D2


1 /2
 ]K 2tr D2


n−1 /2


−1

Sh
−D v hd

 (11)

and

F Sh , q h ,vh
=∫

f⋅vh d∫h
th⋅vh d ∑

K∈
h
∫K

f⋅ ReK  [∇ vh
]uh

−∇ qh
div Sd  (12)
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with  <<1 and 0  according Behr et al. (1993), and the stabilized parameters ReK) and  are given as in  
Franca and Frey (1992),

ReK =
hK

2∣u∣p
 ReK 

ReK={ReK , 0≤ReK1
1, ReK≥1 }

ReK=
mK∣u∣p hK

4 02 tr D2

−1/2 [1−exp−m 2 tr D2


1 /2
 ]K 2tr D2


n−1/2



m k=min {1 /3,2C k}

C k ∑
K∈h

hK
2
∥div Sh

∥0, K
2
≥∥Sh

∥K
2

∀Sh
∈

h

 (13)

in which  |u|p denoting the p-norm to ℜ
N and the parameter mk was derived from the error analysis established in 

Franca and Frey (1992).

Remark: Taking the stability parameter  equal to zero, the multi-field stabilized formulation defined by Eq. (10)-
(13) recovers the classical Galerkin formulation for the boundary-value problem defined by Eq. (8). Besides, the usual 
expression of the grid Reynolds number was modified with the inclusion of the parameter mk in Eq. (13), to take into 
account also the degree of interpolation used. (Franca and Frey, 1992).

3.2. Associated matrix problem

Substituting in Eq. (10)-(13) the finite element approximations for the trial solutions (h,uh,ph) - and their respective 
test functions, namely (Sh,vh,qh) –  as a combination of their shape functions and unknown degrees of freedom, the 
following residual system of nonlinear equations may be achieved,

R U=0  (14)

where U is the vector of degrees of freedom at the nodal points, namely U=[ ,u,p]T, and the residual  R(U) is given by

R U=[1E̇1−HEu ][N u Nu −K−1HT
−GT

 ]u
[GG u  ]p−[FFu ]

 (15)

where [H] is the matrix derived from the surface force term of motion, and [HT] the matrix from the stress­deformation 
relation term of material equation, [E] the matrix from the extra­stress term of material equation, [N] the matrix from 
the inertia force term of motion equation, [K] the matrix from the diffusive term of material equation, [G] and [GT] the 
matrices from the pressure term of motion equation and incompressibility term of continuity equation, respectively, [F] 
the vector from the body force­term of motion equation. Matrices subjected to  ­subscript are derived from stabilized 
terms of motion equation,  []   the matrix  from  ­stabilized­term of  continuity and []   the matrix of  the  ­term of 
continuity equation.

In  order  to  solve  the  non-linear  algebraic  systems  represented  by Eq.   (14)­(15),   a  quasi­Newton   incremental 
method has been used. After an initial estimate for the degree of freedom vector has been set, Uk=0, the following linear 
system must be solved at each Newton iteration,

J Uk Uk1=−R U k  (16)

where the residual R(U) is given by Eq. (15) and the Jacobian matrix J(U) was defined by

J U =1E ̇1−HE u , ̇[∂UE u , ̇]

MN u N u ,̇K−1HT
−GT

[∂U N uN u ,̇] u

GG u , ̇P[∂U G u ,̇] p∂U F u ,̇

 (17)

in order to obtain the incremental vector Uk1 and to update the degree of freedom vector,
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U k1=UkUk1  (18)

until the magnitude of the residual R(Uk) be less than given tolerance value – in this paper, this value has been set as 
10­7.

Remark: Aiming to improve the convergence of the quasi-Newton algorithm, a continuation strategy acting on the 
advective matrices derived from the of motion equation has been implemented (Zinani and Frey, 2006). In addition, the 
algorithm has employed null velocity and pressure fields as initial estimates.

4. NUMERICAL RESULTS

In this section, multi-field stabilized approximations (Eq. (10)-(13)) for Herschel-Bulkley fluid flows, regularized by 
Papanastasiou strategy (Eq. (6) and (7)), through a sudden planar expansion have been carried out– see Fig. 1a for the 
problem statement. The channel aspect ratio has been defined by the relationship between the heights of the small and 
large channels, namely Lc/LH, and was fixed as one-to-four. In order to guarantee fully-developed fluid flows in small 
and large channels, the following relationships have been set: Le/Lc=30, for the small channel, and  Ls/Lc=45, for the 
large one – with Le and Ls standing for the lengths of small and large channels, respectively.

After a mesh independence test, over the error of the Euler pressure coefficient, a mesh employing 19,800 bi-linear 
Lagrangian finite element Q1/Q1/Q1 has been chosen – see Fig. 1b to a detail of the selected mesh at the expansion 
region.

(a) (b)

Figure 1. One-to-four sudden planar expansion flow: (a) Problem statement and (b) a detail of the selected mesh at the 
expansion region.

The imposed velocity and extra-stress boundary conditions were the following: in the channel inlet and outlet, a 
parallel uniform unity velocity profiles, preserving the flow mass conservation; no-slip and impermeability at channel 

walls; symmetry conditions at channel centerline, ∂x2
u1=u2=12=0 , saving computational memory.

In  order  to  evaluate  the  influence  of  the  material  yield  stress  and  inertia  on  viscoplastic  flow dynamics,  the 
Herschel-Bulkley and Reynolds numbers have been introduced, respectively, as suggested in Alexandrou et al. (2001),

HB=
0 Lc

n

K uc
n

 (19)

and

Re=
uc

2−n Lc
n

K
 (20)

with  uc and  Lc standing for characteristic values of velocity and length, and the remaining variables were defined as 
previously.

In Fig. 2 -isobands were shown, aiming to investigate the yield stress limit on flow dynamics of a shear-thinning 
viscoplastic fluid. The flow has been supposed inertialess (Re=0), the Papanastasiou's regularizing parameter fixed as 
m=103, the power-law coefficient as n=0.37, and the Herschel-Bulkley number varying from HB=0.1 to 100. From the 
figure, the more the Herschel-Bulkley number increases, the more the unyielded material regions increase - black zones 
in the pictures – due to the material being subjected to higher values of shear stress limit, < 0. For HB=0.1 (Fig. 2a), 
the yielded regions - the white zones in the pictures -  dominated the entire domain but a tiny unmoving unyielded 
region at expansion corner and a small plug flow around the channel centerline. For higher Herschel-Bulkley values, 
HB=1-100 (Fig.  2b-2d),  this behavior  was enhanced,  with the unyielded region growth strongly dependent  on the 
increasing of HB.
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(a) (b)

(c) (d)

Figure 2. -isobands, for n=0.37, m=103 and Re=0: (a) HB=0.1, (b) HB=1, (c) HB=20, (d) HB=100.

In Fig. 3, the characterization of material unyielded regions has been also re-addressed introducing elevation plots 
for axial velocity, for the same parameter values investigated in Fig. 2 – Re=0, m=103, n=0.37 and HB from 0.1 up to 
100. For all  pictures,  well-defined moving unyielded regions – or,  simply, plug-flows – may be found around the 
centerline of the large channel, even for the lowest viscoplastic flow, HB=0.1 (Fig. 3a). For the two first flows in the 
small channel – for HB=0.1 (Fig. 3a) and HB=1.0 (Fig. 3b) - the transition from the inlet velocity profile to a thin plug-
flow may be still observed, due to the high shear stresses experimented in the channel upstream the expansion ( 0). 
For higher values of HB, for HB=20 (Fig. 3c) and HB=100 (Fig. 3d), this development have disappeared with no visual 
transition to plug-flow profiles being verified. 

 (a)  (b)

 (c)  (e)

Figure 3. Axial velocity isobands, for n=0.37, m=103 and Re=0: (a) HB=0.1, (b) HB=1, (c) HB=20, (d) HB=100.

Fig. 4 has been introduced for two distinct reasons: from the mechanical point of view, to investigate the influence 
of the yield stress on the pressure drop through viscoplastic fluid flows; and, from the numerical point of view, to check 
the stability features of the stabilized method defined in Eq. (10)-(13). Again, creeping flow has been assumed and 
Herschel-Bulkley has been ranged from HB=0.1-100, for fixed values of n=0.37 and m=103. Firstly, from the pressure 
elevation plots shown in this figure, it may be observed that the pressure drop through the channel augmented with the 
HB increasing – as a result of the enlarging of unyielded regions which turned the flow much more viscous. Secondly, 
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all pictures in the figure have shown very stable pressure surfaces, attesting in this way the fine numerical stability of 
the employed stabilized method, even for very high Herschel-Bulkley fluid flows (HB=100 (Fig. 4d)).

 (a)  (b)

 (c)  (d)

Figure 4. Pressure elevation plots, for n=0.37, m=103 and Re=0: (a) HB=0.1, (b) HB=1, (c) HB=20, (d) HB=100.

Now, comparing the pictures shown in Fig. 5 with the ones in Fig. 2, the influence of the power-law coefficient on 
the  morphology  of  unyielded  regions  may  be  understood.  In  Fig.  5,  -isobands  have  been  depicted  for  a  shear-
thickening viscoplastic fluid, namely  n=1.5, creeping flow (Re=0),  m=103 and the same values of Herschel-Bulkley 
numbers presented in Fig. 2, i. e., HB=0.1-100 (Fig. 2a-2d). The same dependence of the unyielded region morphology 
on HB increasing has been noticed, with the shear-thickening fluid presenting larger regions than the analogous regions 
of the shear-thinning viscoplastic fluid depicted in Fig. 2. This feature may be clearly observed comparing Fig. 2a-2b to 
Fig. 5a-5b, for the same values of HB=0.1 and HB=1.0, respectively.

(a) (b)

(c) (d)

Figure 5. isobands, for n=1.5, m=103 and Re=0 : (a) HB=0.1, (b) HB=1, (c) HB=20, (d) HB=100.

In Fig. 6, the influence of the flow-rate on the growth of unyielded material regions has been investigated. In doing 
so, the flow was still supposed to be without inertia effects, for fixed values of HB=20,  n=0.37 and  m=103, and the 
dimensionless inlet axial velocity,  u*=u/uc,  varying from  2 to 20. As it  has been illustrated by  -isobands of these 
pictures, the more the flow-rate increased, the more the unyielded regions of the material decreased. This viscoplastic 
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behavior could be anticipated in virtue of the increasing flow-rate leading to higher shear rates and, according to power-
law constitutive equation (Bird et al., 1987), to higher shear stresses acting on the material along the channel ( 0). 

(a) (b)

(c) (d)

Figure 6.isobands, for HB=20, n=0.37, m=103 and Re=0: (a) u*=2, (b) u*=5, (c) u*=10, (d) u*=20.

At last, the influence of inertia effects on the development of unyielded material regions has been presented in Fig. 
7. Now, the flow has been no more assumed inertialess, with the Reynolds number simulated from 1 to 10, and the fluid 
rheological parameter set as HB=20,  n=0.37 and  m=103. The -isobands at expansion corner illustrated in the figure, 
suggest two distinct viscoplastic behaviors as Reynolds number increases.  First, the unmoving unyielded regions at 
expansion corner  showed a monotonic increasing for  Reynolds values  up to seven (Fig.7a-7c).  Further,  for  higher 
values of Reynolds number, this region began to break up – with the applied shear stresses at expansion corner being 
higher  than  the  material  yield  limit  (>  0),  due  to  inertia  augmentation.  Besides,  the  expansion  vortex  had  its 
development  constrained  by the split  unmoving unyielded regions (Fig.7d),  originating in this way smaller  vortex 
lengths than those experimented by a Newtonian fluid.

(a) (b)

(c) (d)

Figure 7. isobands, for HB=0.1, n=0.37 and m=103: (a) Re=1, (b) Re=5, (c) Re=7, (d) Re=10.

5. FINAL REMARKS

In this article, finite element approximations for regularized Herschel-Bulkley fluids through an one-to-four sudden 
planar expansion have been undertook. The employed mechanical model consisted of mass and momentum balance 
equations  coupled  with  the  Herschel-Bulkley  viscoplastic  equation,  regularized  by  the  equation  introduced  by 
Papanastasiou (1987). This model have been approximated by a multi-field stabilized method in extra-stress, velocity 
and pressure. In the numerical simulations, the Herschel-Bulkley number, the power-law index, the dimensionless inlet 
velocity and Reynolds number have been varied in order to investigate the influence of the material shear limit, the 
shear-thinning effect, the flow-rate and inertia on the morphology of the moving and unmoving unyielded regions of a 
viscoplastic material. For creeping flows, the more Herschel-Bulkley and the power-law index increased,  the more 
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unyielded  regions  increased  too.  On  the  contrary,  the  more  flow-rate  increased,  the  more  the  unyielded  regions 
decreased.  At  last,  for  inertia  flows,  the increasing  of  the Reynolds  number  continuously increased  the unmoving 
unyielded regions at expansion corner, up to a critical value of the Reynolds number; beyond this value, the unyielded 
regions detached from expansion corner and began to break up. In all computations a combination of equal-order bi-
linear  Lagrangian  interpolations  for  extra-stress,  velocity  and  pressure,  violating  in  this  way the  involved  inf-sup 
conditions.
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