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Abstract. Spatiotemporal characteristics of a dynamical system are one of the important aspects related to the complexity of 

natural systems. This research effort deals with the spatiotemporal dynamics of coupled logistic maps. The logistic map lattice is 

coupled from a power law. Non-homogeneous behaviors of the grid are of concern evaluating the spatial interaction of different 

kinds of behaviors. Basically, the grid is split in two parts where each one can present qualitative different responses when isolated. 

Under this condition, the global dynamics is investigated evaluating how both parts interact to each other. Periodic boundary 

conditions are analyzed assuming that the values of the maps are repeated for every N maps. The influence of initial conditions is 

also of concern. Results show situations involving periodic and chaotic patterns. 
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1. INTRODUCTION 

 

Complexity is a term that is being used to denote the main characteristics of complex systems. In general, 

complexity of natural systems has characteristics such as self-organization and adaptive abilities that leads to pattern 

formation. Order and chaos are both related to this complexity and the balance between them occurs in the edge of 

chaos where “life has enough stability to sustain itself and enough creativity to be named as life” (Waldrop, 1992). The 

edge of chaos defines a region of spontaneity that is proper to life. Spatiotemporal characteristic of a dynamical system 

is one of the important aspects related to the complexity of natural systems.  

Literature presents numerous investigations concerning coupled maps. The key motivation is the search for 

universal properties and behaviors that apply to all dynamical systems. Therefore, coupled maps could be understood as 

prototypes of high dimensional dynamical systems. In general, synchronization of spatiotemporal dynamics is most 

intensively studied and there is a lack concerning the systematic investigation of other aspects of the system dynamics 

(Chazottes & Fernandes, 2005). In this regard, it is important to evaluate other aspects related to spatiotemporal 

dynamics. 

This article deals with the spatiotemporal dynamics of coupled maps. These maps represent a mathematical 

idealization of physical systems that are discrete in time and space and have been used to describe the evolution and 

pattern formation in different systems as chemical reactions, turbulence, neural networks and population dynamics. 

Specifically, this work is focused on a system composed by coupled logistic maps where coupling is described by a 

power law. Therefore, each map has the influence of other maps from its neighborhood and boundary conditions are 

also important to define the coupling characteristics. Periodic boundary conditions where the values of the maps are 

repeated for every N maps is of concern. The comparison between responses is made by the observation of the 

dynamics and the values of the Kolmogorov-Sinai entropy density. The influence of initial conditions is also treated. 

Non-homogeneous behaviors of the grid are of concern evaluating the spatial interaction of different kinds of 

behaviors. Basically, the grid is split in two parts where each one can present qualitative different responses when 

isolated. Under this condition, the global dynamics is investigated evaluating how both parts interact to each other. 

Numerical simulations allow one to conclude what types of conditions present greater tendency to develop chaotic, 

periodic and synchronized responses. 

 

2. COUPLED MAPS 

 

The logistic map is employed to describe different problems related to economic and social areas. The logistic map 

is a first order difference equation represented by: )1();(1 nnnn xxxfx −==+ ββ . Recently, coupled logistic maps are 

being used in order to model the evolution and pattern formation in systems associated with chemical reactions, 

turbulence, neural networks and population dynamics (Holden & Zhang, 1992). 

This work used a grid of N logistic maps where coupling is described by a power law as follows (Viana et al., 2005): 
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where  N’=(N −1)/2  and )1()( xxxf −= β ; ε  is the coupling intensity ( 10 ≤≤ ε ),α is the coupling coverage ( 0≥α ),  

and η is given by:  
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Each map i depends of its neighbors and the boundary conditions define the maps when i > N e i < 1. Figure 1 

represents the coupled maps grid, illustrating the boundaries.  

 

 
i=1 

 
i=N 

 
Figure 1. Coupled map grid. 

 

A numerous of boundary conditions can be established in order to represent distinct physical situations. The periodic 

condition assumes an infinite space where the maps repeat for each N maps. Mathematically, this condition is 

represented by: 
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Lyapunov spectrum represents one of the most important geometrical invariant of a dynamical system. The 

knowledge of this spectrum allows one to evaluate other invariants as the Kolmogorov-Sinai entropy. The analysis of 

Lyapunov spectrum in coupled maps can use the same methodology employed for a single map. Hence, let us assume 

coupled maps expressed by: 
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The Lyapunov exponents determination needs to consider the variation of each cell under some perturbation in 

initial conditions, 
)(

0
i

x . The Jacobian matrix is calculated to each iteration as follows (Shibata, 2001), 
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Then, defining  
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Lyapunov exponents, λ
(i)

, are evaluated from the eigenvalue σ
(i)

 of Rn, as follows (Holden & Zhang, 1992): 
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By considering the specific situation of coupled logistic maps where the coupling is defined by power law as 

presented in Eq.(1), the Jacobian matrix is written by: 
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where A is a coupling dependent matrix (Batista & Viana, 2001): 
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At this point, it is possible to use the classical algorithm due to Wolf et al. (1985) that uses the Gram-Schmidt 

ortonormalization of vectors of the tangent space (Lu et al., 2005):  
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This approach allows the evaluation of the principal directions of the ellipsoid centered at a fiducial trajectory. The 

norms of the orthonormalized vectors at the denominator of 
)(i

kN  are used to calculate the Lyapunov exponents. 

Therefore, after n iterations:  
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The Kolmogorov-Sinai entropy density is an index that can be calculated from the positive Lyapunov exponents as 

follows: 
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Hence, when the entropy density vanishes there is no positive Lyapunov exponent and, therefore, there is no chaos. 

On the other hand, positive values of the entropy are related to chaos. 

 

3. DYNAMICAL ANALYSIS 

 

Numerical simulations are carried out by assuming a grid with N = 21 and non-homogeneous values of parameter β  

through the grid. In general, the grid is split in two parts and each one has different value of this parameters. Basically, 

we need to analyze the spatial interaction between two qualitative different behaviors. The left side is defined from  

i = 1 to i = 11 being related to parameter βL, while the right side is defined from i = 12 to i = 21 being related to 

parameter βR. Values of parameter β  are chosen in order to consider different qualitative behaviors of the isolated map, 

that can be indentified from a bifurcation diagram presented in Figure 2: 0 (period-1, stationary); 3.2 (period-2), 3.55 

(period-8); 3.6, 3.7, 3.8 (chaotic); 3.835 (period-3 – periodic-window); 3.9, 4 (chaotic). All simulations are conducted 

assuming that parameter ε is between 0 and 1, while the parameter α is between 0 and 3. Periodic boundary conditions 

are focused on and different kinds of initial conditions are imposed to the system. 

 

          

Figure 2. Logistic map bifurcation diagram. 
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Initially, let us consider an interaction between two dramatic behaviors: stationary (βL = 0) and chaotic (βR = 4). By 

assuming coupling parameters α = 3 and ε = 0.165, the homogeneous grid with β = 4 presents a chaotic behavior with h 

= 0.277 over a period-2 dynamics. On the other hand, the dynamics with β = 0 is stationary. Figure 3 shows 

spatiotemporal response presented as an overlap of the last 30 iterations after 10,000. Two different initial conditions 

are of concern: 0
)(

0 =i
x , except for 1.0

)1(
0 =x ; 1.0

)10(
0 =x , vanishing all others. Both situations are related to a chaotic 

response within a period-2 response which can be assured by the entropy density values h = 0.0267 (Figure 3a) and h = 

0.0245 (Figure 3b). Note that the spatiotemporal aspects are altered by the initial conditions. 
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Figure 3. Overlap of the last 30 iterations after 10,000 for periodic boundary response with α = 3 and ε = 0.165. 

 

The non-homogeneous case is now focused on and the pattern of the homogeneous system is altered due to the 

influence of the left side response. Figure 4 presents the response of this non-homogeneous grid for different random 

initial conditions. Under this condition, the entropy density vanishes and the system presents a period-2 response that 

can be altered due to initial conditions. Figure 4 presents the system response for different initial conditions showing a 

period-4 together with the preponderant period-2 response. 

 

 
Figure 4. Overlap of the last 30 iterations after 10,000 for βL = 0 and βR =  4, α = 3 and ε = 0.165 for three different 

random initial conditions. 

 

If we consider a weak coupling among maps, represented by ε = 0.08, the grid presents a chaotic behavior (h = 

0.1297) although strongly suppressed in the first half of the grid (Figure 5). Entropy shows an intermediate value 

between the values of each isolated half (h = 0 and h = 0.4173, respectively), showing that the resulting chaotic 

behavior is really damped by the maps where β = 0. 
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Figure 5. Overlap of the last 30 iterations after 10,000 for βL = 0 and βR = 4, α = 3 and ε = 0.08. Random initial 

conditions. 

 

A global analysis of the grid with βL = 0 and βR = 4 is done through the observation of the Kolmogorov-Sinai 

entropy density surface (Figure 6). When ε = 0, it is possible to observe that the entropy density has a value that is 

related to an average of Lyapunov exponents of the isolated maps, i.e., zero for the left side and 0.69 for the right side, 

that gives ~0.33. The most important observation is done in the region with high values of both coupling parameters, 

where entropy density value of the non-homogeneous grid is positive for parameter combinations where the 

homogeneous grid with β = 4 results in entropy equal to zero. It can be concluded that the presence of maps with β  = 0 

does not allow the pattern selection and, as consequence, there is a chaos suppression when the grid assumes strong 

local coupling. A periodic valley can be observed around ε = 0.05 and low values of α, where the grid dynamic 

develops period-3 and period-6 behavior. 
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Figure 6. Entropy density surface for βL = 0 and βR =  4. On the right side, the regions where entropy of non-

homogeneous grid is higher than the homogenous grid are highlighted. 

 

 

When βL = 3.2 (related to a period-2 behavior) and βR =  4 (chaos), the grid develops chaotic behavior (h = 0.0134), 

although highly suppressed by the period-2 in the first half of the grid. This observation shows that when βL = 3.2, 

although it is related to a periodic behavior if isolated, the whole grid has a chaotic pattern (Figure 7). 

 

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

x
(i
)

n



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 
Figure 7. Overlap of the last 30 iterations after 10,000 for βL = 3.2 and βR = 4, α =3 and ε = 0.165. Random initial 

conditions. 

 

The next scenario treated deals with βL = 0 (stationary) and βR = 3.835, that corresponds to a  

period-3 window in the bifurcation diagram of the isolated logistic map. It would be reasonable to say that a 

combination of two halves that develop periodic dynamics when isolated should also result in a periodic response for 

the coupled grid. As can be seen in Figure 8, a chaotic pattern is achieved under this condition (h = 0.2057), although 

the grid is composed only of maps that develop periodic motion when isolated. This observation differs from the 

previous, that the coupling restrains chaos development, by suppression of individual independence of each map. 

 
Figure 8. Overlap of the last 30 iterations after 10,000 for βL = 0 and βR = 3.835, α =3 and ε = 0.01. Random initial 

conditions. 

 

At this point, a stronger coupling is assumed and the chaotic behavior is still occurring (Figure 9), but with a 

different spatial pattern. This is in accordance with the observed tendency that chaos is suppressed by strong coupling 

among the maps. The interface between grid halves shows a smoother change of pattern, typical of strong coupling. 

 
Figure 9. Overlap of the last 30 iterations after 10,000 for βL = 0 and βR = 3.835, α = 3 and ε = 0.8. Random initial 

conditions. 
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At this point, two parameters corresponding to periodic response are of concern. Let us consider βL = 3.56 (period-8 

region), βR = 3.835 (period-3, inside the periodic window), and coupling characteristic represented by α= 0.5 and ε = 

0.1. Under these assumptions, the system presents an entropy h = 0.0927 that could be understood as a chaos 

superposed to a period-2 response (Figure 10). 

 
Figure 10. Overlap of the last 30 iterations after 10,000 for βL = 3.56 and βR = 3.835, α = 0.5 and ε = 0.1. Random 

initial conditions. 

 

By changing the coupling parameters for α = 3 and ε = 0.01, the grid also develops chaotic response with entropy 

density h = 0.2069 (Figure 11). This result represents the chaos of the right side being spread to the left side. 

 

 
Figure 11. Overlap of the last 30 iterations after 10,000 for βL = 3.56 and βR = 3.835, α = 1 and 

ε = 0.01. Random initial conditions. 

 

 

Now the coupling is intensified (α = 3 and ε = 0.18). This coupling in a homogeneous grid with β = 4 is associated 

with a period-4 response. For the non-homogeneous grid with βL = 3.56 and βR = 3.835 the resulting dynamic is chaotic 

(h = 0.0112) as can be seen in Figure 12. This result is interesting because the same parameter combination, if applied 

to homogeneous grid with β = 4, i.e., only maps that develops chaotic response when isolated, causes a periodic 

behavior and, if applied to non-homogenous grid with maps that develops periodic response when isolated, causes a 

chaotic behavior. This observation shows the unpredictability related to this kind of system. The interface between the 

halves follows the dynamic of each sector, with a chaotic modulation superposed in a period-2 response. 
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Figure 12. Overlap of the last 30 iterations after 10,000 for βL = 3.56 and βR = 3.835, α =3 and 

ε = 0.18. Random initial conditions. 

 

A new situation is now focused on considering a grid with βL = 4 (chaos) and βR = 3.5 (period-4 response), α = 3 

and ε = 0.2. The homogeneous grid with β = 3.5 can present transient chaos depending on the initial conditions, but the 

steady state dynamics has a period-4 response. Therefore, we are combining two grids that, isolated, are related to 

periodic response. Figure 13 presents overlap of the last 30 iterations where it should be observed the spatiotemporal 

pattern is related to period-4 and period-2 responses. It is also noticeable in this pattern that the map eighteen develops a 

period-5 response and the interface between both halves presents period-12 response. This unpredictable combination of 

different periodic responses is suitable to describe the pattern creation capability of natural systems. 

 

 

 
 

Figure 12. Overlap of the last 30 iterations after 10,000 for βL = 4 and βR = 3.5, α = 3 and ε = 0.2 for two different 

random initial conditions. Detail of period-5 dynamics in map i = 18. 

 

4. CONCLUSIONS 

 

The spatiotemporal dynamics of coupled logistic map is of concern. Basically, we analyze the spatial interaction 

between two qualitative different behaviors. The grid is split in two parts evaluating how they interact. Periodic 

boundary condition is of concern. This kind of condition imposes greater homogeneity along the maps, since each side 

interact in both ends. In general, when there is a half with periodic response and the other with chaotic response, the 

global response tends to suppress chaos. If one half is related to a periodic window (β = 3.835) the interaction between 

both parts inhibits the period-3 response, resulting in a chaotic pattern. It is also possible to obtain unexpected period-12 

response in the interface between parts. In general, this work shows different kinds of patterns that could emerge from 

spatiotemporal nonlinear interactions. 
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