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Abstract. Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) 

embedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical 

systems that may quickly react to some new situation, changing conditions and their response. The OGY (Ott-Grebogi-

Yorke) method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired 

orbit when the trajectory crosses a specific surface, such as a Poincaré section. This contribution proposes a 

multiparameter (MP) method based on OGY approach in order to control chaotic behavior using different control 

parameters. As an application of the proposed multiparameter general formulation it is presented an uncoupled 

approach where the control parameters do not influence the system dynamics when they are not active. This method is 

applied to control chaos in maps using two control parameters. The two-dimensional Hénon and Ikeda maps are of 

concern. Results show that the proposed procedure can be a good alternative for chaos control since it provides a 

more effective UPO stabilization than the classical single-parameter OGY approach.Chaos control is employed for the 

stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. 
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1. INTRODUCTION 
 

Chaos control explores the intrinsic richness of the chaotic behavior by stabilizing unstable periodic orbits (UPOs) 

embedded in a chaotic attractor. This control method is based on some chaotic behavior properties as the existence of a 

dense set of UPOs embedded in a chaotic attractor; the ergodicity property; and the sensitive dependence to initial 

condition. Therefore, chaos is related to flexibility since, when controlled, may allows the system to quickly change 

from one kind of response to another. 

Chaos control methods may be classified as discrete or continuous techniques. The modern study of chaos control 

starts with the pioneer method proposed by Ott et al. (1990), nowadays known as the OGY method as a tribute of their 

authors (Ott-Grebogi-Yorke). This is a discrete technique that considers small perturbations of a single-parameter 

applied in the neighborhood of the desired orbit (Grebogi & Lai, 1997; Shinbrot et al., 1993). On the other hand, a 

different approach explores the delayed feedback control proposed by Pyragas (1992) that states the stabilization of 

chaotic systems by a feedback perturbation proportional to the difference between the present and a delayed state of the 

system. The original limitations of the OGY method are overcome in different references and, among others, one can 

cite: control of high periodic and high unstable UPO (Hübinger et al., 1994; Otani & Jones, 1997; Ritz et al., 1997; 

Pereira-Pinto et al., 2004, Savi et al., 2006), control using time delay coordinates (Dressler & Nitsche, 1992; So & Ott, 

1995; Korte et al., 1995; Pereira-Pinto et al., 2005), control using different control parameters (De Paula & Savi, 2007; 

Barreto & Grebogi, 1995). 

Chaos control techniques are being used in different applications in order to stabilize UPOs. The first experimental 

verification of the OGY approach is applied to magneto-elastic beams (Ditto et al., 1990). Andrievskii & Fradkov 

(2004) present an overview of chaos control applications in various scientific fields. Mechanical systems are included in 

this discussion presenting control of pendulums, beams, plates, vibroformers, microcantilevers, cranes and vessels. 

This contribution considers a multiparameter chaos control method built upon the OGY approach. The idea is to use 

different control parameters in order to perform the UPO stabilization and, because of that, the map that establishes the 

relation between the system responses in two subsequent control stations depends on all control parameters. The 

proposed method assumes that only one control parameter is perturbed in each control station, defining active (is 

perturbed in a control station) and passive (is not perturbed in a control station) parameters. As an application of the 

general formulation, an uncoupled approach is proposed where control parameters return to their reference value when 

they become passive and therefore, they are not influencing the system dynamics. This method is applied to control 

chaos in maps considering two control parameters. Specifically, Hénon and Ikeda maps are of concern. Hénon map is a 

simple two-dimensional map with quadratic non-linearity that gave a first example of the strange attractor with a fractal 

structure (Sonis, 1996). As suggested by Hénon (1976), this two-dimensional map is a simple version of the original 

problem that describes fluid flow in three-dimensional space, exhibiting the same properties. Ikeda map is also a two-

dimensional map that originally represents a string of light pulses impinging on a partially transmitting mirror (Hammel 

et al., 1995). De Paula & Savi (2007) use similar idea of the multiparameter method in order to control chaos in a 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

nonlinear pendulum (De Paula et al., 2006) using a semi-continuous method. Lenz & Obradovic (1999) also perform a 

multiparameter control of Hénon and Ikeda maps employing the locally linearized system representation. 

All system dynamics may be treated from time series analysis. Here, the close-return (CR) method (Auerbach et al., 

1987) is employed to indentify the UPOs embedded in the attractor. Afterwards, the local dynamics expressed by the 

Jacobian matrix and the sensitivity matrix of the transition maps in a neighborhood of the control points are determined 

using the least−square fit method (Otani & Jones,1997; Pereira-Pinto et al., 2004; Pereira-Pinto et al., 2005; Auerbach 

et al., 1987; Savi, 2006). Moreover, the singular value decomposition (SVD) technique is employed for determining the 

stable and unstable directions near the control point. Results show that the uncoupled multiparameter approach can be a 

good alternative for chaos control since it provides a more effective UPO stabilization when compared to those obtained 

from the classical single-parameter OGY approach. 

 

2. MULTIPARAMETER CHAOS CONTROL METHOD 
 

Chaos control method is a two stage technique where the first step is the learning stage and the second one is the 

control stage. The learning stage identifies the unstable periodic orbits and evaluates some system characteristics. The 

control stage, on the other hand, controls the desirable UPOs promoting their stabilization.  

After the learning stage, one can proceed to the next stage where a control process needs to be used to stabilize a 

desired orbit. The OGY approach is an alternative to promote this UPO stabilization. Its description considers a discrete 

system equivalent to a parameter dependent map associated with a general surface, usually a Poincaré section. Let F be 

the mapping of the system behavior from one Poincaré section Σn to the next one Σn+1 and nξ  be the intersection of the 

system trajectory with the Poincaré section Σn. Therefore, it is possible to write: 
  

),(1
pF

nn ξξ =+
 (1) 

 

where p ℜ∈  is an accessible parameter for control. The control idea is to monitor the system dynamics in these control 

stations until the neighborhood of a desirable fixed point is reached. After that, a proper small change in the parameter p 

causes the next state 
1+nξ  to fall into the stable direction of the fixed point. In order to find the proper variation in the 

control parameter, perturbation δp, it is considered a linearized version of the dynamical system near this control point. 

The linearization has a homeomorphism with the nonlinear problem that is assured by the Hartman-Grobman theorem 

(Savi, 2006). This linearization, however, is not valid for nonhyperbolic chaotic attractors and the control method fails 

when applied to this kind of problem (Huang, 2002).  

The proposed multiparameter (MP) chaos control method formulation, introduced in De Paula & Savi (2007) as a 

semi-continuous method, is now presented in order to provide a better reading. The multiparameter control considers Np 

different control parameters, pi (i=1,…,NP). By considering a specific control station, only one of those control 

parameters is perturbed. Under this assumption, the map F, that establishes the relation of the system behavior between 

the control stations Σn and Σn+1, depends on all control parameters. In general, although only one parameter is perturbed 

in each section, it is assumed the influence of all control parameters based on their positions in station, Σn. On this basis,  
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where n
P  is a vector that contains all control parameter positions. By using a first order Taylor expansion, one obtains 

the linear behavior of the map F  in the neighborhood of the control point n
Cξ , that consist in the intersection of the 

desired UPO with control station nΣ , and around the control parameters reference positions, 0P , as defined by Eq. (3).  
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This equation may be rewritten as follows 
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ξ  is the sensitivity matrix in which each column is related to a control parameter and 
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ξ  is the Jacobian matrix. Moreover, from Jacobian eigenvalues ( su ee , ) it is possible to 

define a contravariant basis vector ( su ff , ) given by 1=⋅=⋅ uuss efef , 0=⋅=⋅ suus efef . Therefore, the Jacobian can 

be written as: 

 

sssuuu
n

fefeJ λλ +=  (5) 

 

By assuming that only one parameter is perturbed in each control station, it is possible to define active parameters, 

represented by subscript a, 
n

aPδ  (is perturbed in station nΣ ), and passive parameters, represented by subscript p, n
pPδ  

(is not perturbed in station nΣ ). Therefore,  
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where n
aW

 
is the sensitivity matrix column related to the active parameter in control station nΣ  and n

pW
 
consists on the 

sensitivity matrix columns related to the passive parameters in the same control station.  

The foregoing formulation may be considered as a general multiparameter control method where all parameters 

perturb the system dynamics. A particular case of this general procedure has uncoupled control parameters meaning that 

each parameter returns to its reference value when it becomes passive. Under this assumption, passive influence 

vanishes: 
 

0=n
p

n
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Therefore, the map F is just a function of the active parameter, ),(1 n
a

nn PF ξξ =+ , and the linear behavior of the 

map F  in the neighborhood of the control point n
Cξ  and around the control parameter reference positions, 0P , is now 

defined by:  
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In order to pick 
n

aPδ  in such a way that 
1+nδξ  falls on the stable direction of the desired fixed point, it is considered 

the following restriction:  
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Thus, for sufficiently small 
nδξ and using the Jacobian defined in Eq. (5), one obtains: 
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where n
aPδ  corresponds to the perturbation that must be applied by the active parameter in control station nΣ  in order 

to stabilize the system trajectory. 

 

3. CONTROLLING MAPS 
 

Numerical simulations considering maps are carried out in order to evaluate the capability of the proposed 

uncoupled multiparameter chaos control method to stabilize desirable UPOs. System characteristics are evaluated from 

time series generated by map iterations. Specifically, the two-dimensional Hénon and Ikeda maps are of concern. Since 

both cases are related to discrete-time nonlinear system, the system dynamics automatically furnishes the Poincaré map 

construction. Therefore, the control action is directly applied in map iterations. 

In the first stage of the control strategy UPOs embedded in the chaotic attractor are identified. The close return 

method (Auerbach et al., 1987) is employed with this aim. The UPO identification is done by considering a number of 

map iterations and a prescribed tolerance as follows:  
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tolerance≤−+ nPn XX  (11) 

 

where nPn XX −+  is a function that returns the largest singular value of )( nPn XX −+  and the subscript P indicates 

the periodicity of the identified UPO. 

After the UPO identification, the local dynamics expressed by the Jacobian matrix and the sensitivity matrix of the 

transition maps in a neighborhood of the control points are determined using the least−square fit method (Otani & 

Jones,1997; Pereira-Pinto et al., 2004; Pereira-Pinto et al., 2005; Auerbach et al., 1987; Savi, 2006). The sensitivity 

matrices are evaluated allowing trajectories to come close to a control point and then one perturbs the parameters by 

proportional value of the maximum permissible. After that, the singular value decomposition (SVD) technique is 

employed for determining the stable and unstable directions near the next control point. At this point, the first stage of 

the control strategy is completed. In control stage, the perturbation is calculated and, when it is greater than the 

maximum value, it is assumed a perturbation equal to the maximum value. 

The uncoupled multiparameter approach is treated by evaluating a control rule considering a sequence of four 

different UPOs for each analyzed system. Moreover, in order to establish a comparison between the uncoupled 

multiparameter and the single-parameter method, the same control rule is applied to both approaches. Two different 

control parameters are analyzed in the single-parameter approach considering the isolated perturbation performed by 

each parameter employed during multiparameter method. 

As an application of the proposed formulation, it is analyzed the uncoupled multiparameter chaos control method 

applied to the Hénon and to the Ikeda maps using two control parameters. Under this assumption, each system iteration 

represents the desired Poincaré map. Moreover, since in each control station only one control parameter is perturbed, it 

is considered that they are perturbed alternating each other. Finally, the evaluation of the control parameter is given by 

Eq.(10), considering the column of the sensitivity matrix associated with the active control parameter. 

 

3.1. Controlling Hénon Map 
 

The Hénon map is a simple two-dimensional map with quadratic non-linearity. Mathematically, it can be expressed 

as follows (Hénon, 1976):  
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where δα  is the first control parameter while δβ  is the second control parameter.  

By considering a chaotic strange attractor of the Hénon map (Figure 1) for parameter values β = 0.3 and α = 1.4, it 

is applied the multiparameter control approach, with two control parameters, as well as the single-parameter approach. 

 

 
 

Figure 1. Chaotic attractor for the Hénon map with parameters values 4.1=α  and 3.0=β . 

 

The UPO identification is done by considering 10,000 map iterations and a prescribed tolerance of 0.01. Under this 

assumption, 32 UPOs are identified during the learning stage up to periodicity 15. It is defined a control rule that 

considers the following UPO sequence: a period-1 orbit during the first 500 iterations, a period-15 from iteration 500 to 

1000, a period-4 from 1000 to 1500 and, finally a period-7, from period 1500 to 2000. 
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In chaos control evaluation it is considered 09.0maxmax == δβδα  as maximum parameter perturbations. When the 

calculated perturbation is greater than these values it is assumed a perturbation equal to the maximum value. The 

reference positions considered for both parameters are 000 == δβδα . 

Figure 2 presents results for the cited control rule employing the uncoupled multiparameter control approach. On the 

other hand, results for single-parameter approach, considering the isolated perturbation performed by each control 

parameter, are shown in Figure 3 (where δα is the control parameter) and in Figure 4 (where δβ is the control 

parameter). All these Figures present the evaluated control perturbation. In Figure 2, both parameter perturbations are 

presented together, however, it is important to highlight that when one of the control parameters is perturbed the other is 

always at its reference position. These results show that both multiparameter and single-parameter approaches are 

effective to stabilize all UPOs of the cited control rule.  

 

 
 

Figure 2. Hénon map stabilization using uncoupled multiparameter approach:  

(a) Displacement; (b) Control parameters perturbations. 

 

 
 

Figure 3. Hénon map stabilization using single-parameter δα: 

(a) Displacement; (b) Control parameters perturbations. 
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Figure 4. Hénon map stabilization using single-parameter δβ:  

(a) Displacement; (b) Control parameters perturbations. 

3.2. Controlling Ikeda Map 

 

The Ikeda map is a two-dimensional map that represents a string of light pulses entering at the partially transmitting 

mirror (Hammel  et al., 1985), being mathematically expressed as:  
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β , δα  is the first control parameter while δµ  is the second control parameter.  

In chaos control evaluation it is considered 05.0maxmax == δµδα  as maximum parameter perturbations. Once again, 

when the calculated perturbation is greater than these values it is assumed a perturbation equal to the maximum value. 

The reference positions considered for both parameters are 000 == δµδα . 

The uncoupled multiparameter approach, considering two control parameters, as well as the single-parameter OGY 

method, is now applied to the chaotic strange attractor of the Ikeda map for the parameter values β = 0, γ = 7, µ = 0.9 

and α = 1.25 (Figure 5) (Alsing et al., 1994). 

 

 
 

Figure 5. Chaotic attractor for the Ikeda map with parameters values 0=β , 7=γ , 9.0=µ  and 25.1=α . 

 

The UPO identification is now focused on by considering 30,000 map iterations and a tolerance of 0.005, assuming 

the same procedure of the preceding section. Under this assumption, 8 UPOs are identified during the learning stage up 

to periodicity 15. The control rule considers the following sequence: a period-10 orbit during the first 500 iterations, a 

period-14 from iteration 500 to 1000, a period-8 from 1000 to 1500 and, finally a period-5, from period 1500 to 2000. 

Control rule sequence is now analyzed during the control stage. Figure 6 presents results of the control rule 

stabilization employing the uncoupled multiparameter approach, while results for single-parameter approach, 

considering the isolated perturbation performed by each control parameter, are shown in Figure 7 (where δα is the 

control parameter) and in Figure 8 (where δµ is the control parameter). Once again, these Figures present the evaluated 

control perturbation. Both parameter perturbations are presented together in Figure 6 where it might be highlighted that 

when one of the control parameters is perturbed the other is always at its reference position. This result show that the 

uncoupled multiparameter control approach successfully stabilize all UPOs of the control rule. By observing the single-

parameter results it must be noticed that the UPO stabilization is not performed properly. Figure 7 shows that the single-

parameter method is not able to stabilize the first UPO when the first parameter (δα) is employed as control parameter. 

On the other hand, the OGY single-parameter method is not able to stabilize the third UPO of the control rule when the 

second parameter (δµ) is employed (Figure 8). These results are showing that the multiparameter approach may be more 

effective in order to perform UPO stabilization. 
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Figure 6. Ikeda map stabilization using uncoupled multiparameter approach:  

(a) Displacement; (b) Control parameters perturbations. 

 

 

Figure 7. Ikeda map stabilization using single-parameter δα: 

(a) Displacement; (b) Control parameters perturbations. 

 

 

Figure 8. Ikeda map stabilization using single-parameter δµ: 

(a) Displacement; (b) Control parameters perturbations. 

 

4. CONCLUSIONS 
 

This contribution presents a multiparameter chaos control method built upon the OGY technique. The 

procedure assumes that only one control parameter is perturbed in each control station, defining active and passive 

control parameters. As an application of the proposed multiparameter general formulation, it is considered an uncoupled 

approach where control parameters return to their reference positions when they are not active. The uncoupled 

multiparameter method is analyzed by evaluating chaos control in Hénon and Ikeda two-dimensional maps with two 

control parameters. Control rules are defined from a sequence of four different UPOs for each map. Results show that 

the uncoupled multiparameter procedure successfully stabilizes all orbits controlled by the single-parameter approach. 
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On the other hand, there are situations where the single-parameter approach fails. Therefore, one can conclude that the 

uncoupled multiparameter procedure tends to be more effective in order to stabilize unstable periodic orbits embedded 

in the chaotic attractor when compared with the stabilization performed by the single-parameter approach. The 

application of the general coupled approach is associated with a non-trivial work on defining proper control parameters 

but may present successful results as shown in De Paula & Savi (2007). 
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