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Abstract. In this paper, truss optimization for size and shape is performed, taking into account frequency constraints. It 

is well-known that structural optimizations on shape and size are highly non-linear dynamic optimization problems 

since this mass reduction conflicts with the frequency constraints especially when they are lower bounded. Besides, 

vibration modes may switch easily due to shape modifications. This paper intends to investigate the use of a Particle 

Swarm Optimization (PSO) algorithm as an optimization engine in this type of problems. This choice is based on 

reported well-behavior of such algorithm as global optimizer in other areas of knowledge. Another feature of the 

algorithm is taken into account for this choice, as the fact that it is not gradient based, but just based on simple 

objective functions evaluations. This is of major importance when highly non-linear dynamic optimization problems 

with several constraints are treated, avoiding bad numerical behavior due to gradient evaluations. The algorithm is 

briefly revised highlighting its most important features. It is presented four examples regarding the optimization of 

trusses on shape and sizing with frequency constraints. The examples are widely reported and used in the related 

literature as benchmark examples. The results show that the algorithms performed similar to other methods and better 

in other cases. 
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1. INTRODUCTION                                  

                             

The optimization on shape and sizing of truss structures with frequency constraints is a non-linear optimization 

problem that is not completely addressed. This type of optimization is very useful when the dynamic performance is 

intended to be enhanced with regard to narrow band or even wide band frequency excitations. As indicated by Grandhi 

et al.(1993), in most of  low-frequency vibration problems the response of the structure is a primarily function of its 

fundamental frequency and mode shape, so the ability to manipulate these fundamental frequency can significantly 

improve the performance of the structure and avoid resonance phenomenon. As indicated, when optimizing for mass, 

vibration modes can switch, for example, from a bending mode to a torsional or axial mode, and this can lead to 

frequencies changes, causing convergence difficulties. Methods based on sensitivity (gradients) of the frequency to the 

design variables had difficulties when dealing with multiple repeated eigenvalues (structural symmetry), since the 

gradient is not formally defined. Furthermore, by its gradient based nature, it may converge to local optima.                               

 

2.  BRIEF BIBLIOGRAPHICAL REVIEW 

                             

 One of the first papers that addressed the problem of minimum mass-truss optimization with constraints in 

frequency was after Bellagamba and Yang (1981) which presented a constrained parameter optimization technique. The 

procedure employed an exterior penalty function to transform the constrained function into an unconstrained one and 

uses the Gauss method to solve simultaneous linear equations with the variation of the parameters as the unknowns to 

perform the unconstrained minimization. It was later introduced local buckling constraints. In the end, stable thermal 

loads were introduced and equality constraint was imposed on the fundamental natural frequency (which uses a four 

degree-of-freedom axial force bar element) of the analyzed structures. Another paper that reviews methods and 

applications on structural optimization with frequency constraints was due to Grandhi (1993). In this paper a series of 

revised papers on truss optimization with frequency constraints are listed and a large number of papers covering a wide 

variety of related problems is revised, as well. One of the findings in the review is that the common problem in 

frequency optimization is the switching of vibration modes due to structural size and shape modifications and this is 

reported as a cause of convergence difficulties for the optimization algorithms. Another problem found in the revised 

papers was the fact that some structures exhibit repeated eigenvalues even though the initial design did not have any. A 

series of papers that deal with the problem of sensitivity analysis for structures with repeated eigenvalues are listed..  
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 Yang et al. (1999) presented an evolutionary method for structural topology optimization subjected to frequency 

constraints. The method is based on the idea of gradually removing inefficient material and allowing new material to be 

added. In this paper, three kinds of optimization objectives were investigated: maximizing a single frequency, 

maximizing multiple frequencies and designing structures with prescribed frequencies. It was analyzed four cases and 

the results showed that the new methodology seems to be computationally accurate in most of the cases. Roux at 

al.(1998) presented the idea for a response surface methodology to bypass the expensive structural analysis. In the paper 

it is investigated aspects related to best regression equation, location and size of the region of approximation. As 

optimization engine, it is used a variation of the Sequential Linear Programming (SLP). As result, it is reported that the 

use of the two investigated method does not significantly improved the results due to a lack of accuracy in the 

approximated cost function. Simple examples of 2, 3 and 10-bar trusses are used to validate the results. 

 The problem of multiple fundamental eigenvalue in the optimum design was addressed by Ohsaki et al. (1999). It 

was presented a Semi-Definite Programming Algorithm (SDPA) with utilizes extensively the sparseness of trusses 

matrices in the optimization problem for specified frequencies. As a gradient based method, it is demonstrated that the 

SDPA has advantages over existing methods in view of computational efficiency and accuracy of the solutions. As 

example, a five fold fundamental eigenvalue optimal topology truss is analyzed. 

 Tong et al. (2000) in their paper presented a basic theory for determining the solution existence of frequency 

optimization problems for truss structures. A practical method is presented based on the fact that frequencies remain 

unchanged when the truss is modified uniformly. So, using a first order derivative of certain eingenvalues with respect 

to design variables it was possible to conclude when a specific natural frequency is achievable. The presented method 

requires separated checking for each frequency constraints which may be costly for problems with large number of 

frequency constraints; however it is indicated that approximation methods would be preferable in practical checking 

process to avoid such eigenvalue analysis. The procedure allows obtaining an extreme value of the corresponding 

natural frequency or a small confined range of design variables that contains the extreme value. Examples ranging from 

a two bar optimization problem to a 72-bar space truss were analyzed. 

 Tong and Liu (2001) presented a procedure for minimum weight optimization with discrete design variables for 

truss structures subjected to constraints on stresses, natural frequencies and frequency responses. The procedure 

consisted of two basic steps: firstly it was determined a feasible start point using a difference quotient method and 

secondly it was evaluated the discrete values of the design variables converting the structural dynamic optimization 

problem into a linear zero-one programming by means of a binary number combinatorial algorithm. Three examples 

were presented, two of them analyzing a 10-bar plane truss and the last regarding a 25-bar space truss, demonstrating 

the feasibility of the optimization procedure. Sedeghati et al. (2001) proposed an integrated finite element analysis with 

an integrated force method for frequency analysis jointly with a mathematical programming technique. Three structures, 

composed of truss and frame type were studied and the results were compared with literature benchmarks. It was shown 

that the multiple frequency constraints significantly affected the final optimum design although the force method 

resulted in a lighter computational cost design. Xu et al. (2003) presented a practical methodology based on a topology 

group concept for finding optimal topologies of trusses. It was considered constraints like, natural frequencies, stress, 

displacement, Euler buckling, and multiple loading conditions. In this paper special attention was given to meaningless 

topologies which are excluded. The algorithm used for the optimizations was a Binary Number Combinatorial 

Algorithm joined to an unconstrained direct search algorithm. So, there were a certain number of fixed nodes and it was 

allowed to change the total number of nodes, taking into account mechanisms formation (rigid body motion) or 

meaningless topologies. To avoid problems related to the elimination of bars/nodes and maintain the computational 

dimension, a so called Imaginary Bar Method was implemented. The efficiency of the proposed algorithm was 

demonstrated by two typical examples of trusses. The optimally criterion based on differentiation of the Lagrangian 

function was used by Wang et al. (2004). It is used to solve the three-dimensional truss structures optimization with 

multiple constraints on its natural frequencies. Nodal coordinates and cross-sectional areas were treated simultaneously 

in the weight minimization. In this methodology the optimal solution was achieved gradually from an infeasible starting 

point with minimum weight increment and the structural weight was indirectly minimized. Four typical truss examples 

were analyzed and solved with the proposed methodology and it was shown to be quite effective and reliable. 

 More recently, Lingyun et al. (2005) presented a paper where an enhanced genetic algorithm with float point 

codification was proposed to solve de non-linear optimization problem of mass minimization of trusses with frequencies 

constraints. To account for constraints it was used the well-known and effective constraint handling method, the Penalty 

Method. In this work, a hybrid algorithm, formed by simplex search and genetic algorithms was developed following a 

nature based scheme of Niche. The algorithm, called NGHA (Niche Genetic Hybrid Algorithm), chooses groups of 

individuals from population to form a niche. Each niche is searched for optimum values using a simplex algorithm and 

then another simplex search is used to search among the best niches. Several parameters, like those used to define the 

niche (some distance measure in terms of cost function) and the probability of use of the simplex search have to be set a 

priori. This was intended to give the algorithm a balance between exploration and exploitation. Three truss structures 

were analyzed and compared with literature results, in most of the cases the new methodology presented best results 

than those reported in the references. 
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 Gholizadeh et al. (2008) and Salajegheh et al. (2007) presented a study where a Genetic Algorithm (GA) and a 

Neural Netowork (NN) were used together to find the optimal weight of structures subjected to multiple natural 

frequency constraints. The evolutionary algorithm used was the Virtual Subpopulation (VSP) method which was 

responsible for the optimization. To reduce the computational time in the optimization process, the structural analysis 

was replaced by a properly trained neural network with radial basis function (RBF) and a wavelet radial basis function 

(WRBF) neural network. The paper demonstrates that the best results were found using the VSP method with a WRBF 

network. It was analyzed two examples, the first one a simple planar truss with 10 bars and a second one, a more 

complex problem, a double layer grid with 200 bars. In a similar work, Torzakdeh et al. (2008) presented four different 

methods for the optimum design of structures subjected to multiple frequency constraints based on gradient evaluations. 

It was presented a new third order approximation function for the structural responses quantities, as function of cross 

sectional properties and the four different methods for the optimum design were defined based on this approximate 

function. The key idea was to create the approximate eingenvalues with respect to the cross-sectional properties, so 

using this higher order approximation could enhance the frequencies evaluation and thus enhance the quality of the 

optimization. In the paper 3D steel framed structures with one and eight stories was optimized with constraints in the 

first 3 natural frequencies. The results were compared in terms of accuracy and computational time. 

 

3.  SWARM OPTIMIZATION ALGORITHM 

 

The particle Swarm optimization (PSO) has been inspired by the social behavior of animals such as fish schooling, 

insects swarming and birds flocking. This method is used to search for the global optimum of wide variety of arbitrary 

problems. It was first introduced by Kennedy and Everhart (1995). The initial intent of the particle swarm concept was 

to graphically simulate the graceful and unpredictable choreography of a bird flock, the aim of discovering patterns that 

govern the ability of such bird flock to fly synchronously and suddenly change direction with regrouping in an optimal 

formation. Rigorously speaking, it is a stochastic, population based evolutionary computer algorithm. The basis for the 

method relies on the social influence and social learning which enable persons to maintain cognitive consistency. So, 

the exchange of ideas and interactions between individuals may lead them to solve problems. The particle swarm 

simulates this social plot. As stated by Li et al.(2007), the method involves a number of particles, which have a defined 

position and velocity and they are initialized randomly in a multidimensional search space of an objective function. 

Each particle represents a potential solution of the problem and the measure of this potentiality is its objective function. 

The set of particles are generally referred as “swarm”. These particles fly through the multidimensional space and have 

two essential reasoning capabilities: their memory of their own best position and knowledge of the global or their 

neighborhood's best. In a minimization optimization problem, "best" simply means the position of the particle (
i

x  ) 

with the smallest objective value min ( )if x . Members of a swarm communicate good positions to each other and 

adjust their own position and velocity based on this information of good positions. So, related to each particle there are 

a set of design variables (
i

x ) and the respective velocities (
i

v ) that represents the potential solution of the optimization 

problem.  

At each iteration, the basic swarm parameters position and velocity are updated using the following equations: 

 
1 1
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1 1
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i j i i j i j j i j
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v v c r xlbest x c r xgbest x

x x v

χ ω+ +

+ +

= + − + −

= +
      (1) 

 

where ω  is the inertia weight for velocities (previously set between 0 and 1), ,

k

i jx  is the current value (k) of design 

variable j of particle I,
1

,

k

i jv
+

is the updated velocity of design variable j of particle i,   is the best design variable j ever 

found by particle i, ,

k

i jxlbest   is the best design variable j ever found by the swarm,  1r  and  2r  are uniform random 

numbers in the [0,1] range,  1c  means the cognitive component (self confidence of the particle) and  2c  means the 

social component (swarm confidence) and they are constants that influence how each particle is directed towards good 

positions taking into account personal best and global best information , respectively. They usually are set 

as
1 2

1.5c c= = . The role of the inertia weight  ω   is crucial for the P.S.O. convergence. It is employed to control the 

impact of previous velocities on the current particle velocity. A general rule of thumb indicates to set a large value 

initially to make the algorithm explore the search space and than gradually reduce it in order to get refined solutions. In 

this paper it is initially set as  0.8ω =  and updated based on coefficient of variation ( /cov σ µ=  ) of the swarm 

objective function accordingly to 0.4[1 (cov,0.6)]minω = + . 

The χ  parameter is used to avoid divergence behavior in the algorithm and it is given by the following expression, 

which was developed based on convergence assumptions for the algorithm, as indicated by Bergh and Engelbrecht 

(2006).  
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This coefficient is crucial to keep the algorithm stable and avoid divergence in the iteration process. There are 

variations in the algorithm that add a third term in the previous velocity update that accounts for neighborhood 

information. This requires the user to set an influence region to define the neighborhood. In this paper the just the 

simple algorithm was used in order to reduce the number of heuristic parameters. For the generation of initial particles 

of swarm it is common to set randomly distributed particles across the design space, so: 

 
0

, ( )i j j min j max j minx x r x x= + −           (3) 

0

, 0i jv =              (4) 

 

where 
0

,i jx  means the initial position for design variable j of particle i, r means an uniformly random generated number 

in the [0,1] range,  and  means the lower and upper bounds for design variable j. It is implicit in this formulation that the 

iterations mean the time step of the process.  

 A simple way to understand this updating procedure is depicted by Hassan et al. (2004) and indicated in the 

following Fig. 1. 
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Figure 1. Vector representation of velocity and position updates in Particle Swarm Optimization Algorithm (Hassan et 

al., 2004). 

 

The easier way to set a convergence criterion for the algorithm is monitoring the differences in the global best 

design variables between iteration or even the global best objective function. However a more effectively one can be 

built based on the Coefficient of Variation of objective function in the swarm. In this paper a combination of the three 

criteria was simultaneously employed. 

 In the following a pseudo-code for the implemented Swarm Optimization Algorithm is depicted in the Fig. 2. 

So, in terms of Truss Optimization the problem can be mathematically stated as: 

1

*

*

min

min max

1,...,
n

i i i

i

j j

k k

l l

q q q

minimize Mass L A i n for all bars

Subjected to for some eigenvalues j
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ρ

ω ω

ω ω

=
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≤
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≤ ≤

∑

x x x

        (5) 

 

In this paper the constraints violations will be treated with the penalty function technique so the objective function 

to be minimized is modified to: 

 

1

( )(1 )
n

i i i

i

Mass L A PF for all barsρ
=

= +∑         (6) 

 

where the Penalization Factor (PF)  is defined as the sum of all active constraints violations as indicated. 

*
1

nc
i

i=1 i

PF for all active constraints
ω

ω
= −∑          (7) 
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This formulation allows that for solutions with violated constraints, the objective function is always greater than the 

non-violated one. 

 

Set the algorithms parameters: number of particles n, number of design variables m, cognitive parameter 1c , social parameter 2c , 

velocity momentumω , coefficient to avoid divergence χ , minimum coefficient of variation
min

cov , upper and lower bound for 

design variables 
minx  and 

max
x . 

Create initial random Swarm and initialize the local best values 

For each particle i in the swarm 

   For each design variable j 

          r=uniform[0,1] 

        
0

, ( )i j j min jmax j minx x r x x= + −  

        0

, 0i jv =  

         Set the local best design variable as the current one 

         
,i j

xlbest =
,i j

x  

   End 

   Set the local best objective function as the current one 

  ( )i if xlbest = ( )if x  

End 

Iterates with the Swarm to find particle with design variables that lead to a minimum objective function 

Loop until convergence criterion of Coefficient of Variation(
min

cov cov<  ), global best objective function (
1( )if

+
xgbest -

( )
i

f xgbest <tolerance) or global best design variable (
1i i+

−xlbest xlbest <tolerance) of the Swarm is met  

   Evaluate for each particle the objective function ( )i if x  

   Update the local best and their objective function 

   For each particle i 

        If ( )
i

f x < ( )
i i

f xlbest  then ( )i if xlbest = ( )
i

f x  and 
ixlbest =

ix     

   End  

   Find the minimum particle objective function min( ( )if x ) 

   If min( ( )if x ) < ( )if xgbest  then ( )if xgbest = min( ( )
i

f x ) and 
i

xgbest = [min( ( )]i iindex f xx      

   For each particle i in the swarm 

        r1= uniform[0,1] 

        r2= uniform[0,1] 

       1

1 1 2 2( ) ( )k k k k k k

i i i i i i
c r c rω+

= + − + −v v xlbest x xgbest x  

        1 1k k k

i i iχ+ +
= +x x v  

   End 

End 

 

Figure 2. Pseudo-code for the simple Particle Swarm Optimization. 

 

4.  NUMERICAL EXAMPLES 

 

4.1. Ten bar Truss 

 

This example was first solved by Grandhi and Venkayya (1988) using the optimality algorithm. Sedeghati at al. 

(2002) used a Sequential Quadratic Programming (SQP) with conjunction with finite element force method to solve the 

problem. Wang et al. (2004) used a evolutionary node shift method and Lingyum et al. (2005) used Niche Hybrid 

Genetic Algorithm. This paper address this problem using the particle Swarm Algorithm previously described. It is a 

simple 1-bar truss with fixed shape and variable continuous bar sizes. At each free node it is attached a non-structural 

mass of 454.0 kg as depicted by Fig. 3.The material properties as design variable ranges are listed in Tab. 1. So this is a 

truss optimization on size with three frequency constraints and ten design variables.  

Tab. 2 shows the design variables results and the final mass for the optimized truss. It should be highlighted the 

good results obtained with the PSO algorithm. The truss mass obtained by the PSO was a little worse than Sedaghati et 

al. (2002) results. 

Tab. 3 shows the optimized frequencies (Hz) obtained by several authors in the literature and the results obtained 

by the present work. It is clear that none of the frequency constraints were violated. This was only true for the Sedaghati 

et al. (2002) results, which presented the lighter result so far. Since none of the papers presented the number of function 

evaluations, it is not performed here this type of comparison. 
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Figure 3. 10-bar truss structure with added masses. 

 

 

Table 1. Material properties and frequency constraints for 10-bar truss structure. 

 

Property Value Unit 

E (Young Modulus) 6.98x1010 N/m2 

ρ  (Material density) 2770.0 kg/m3 

Added Mass 454.0 kg 

Design Variable Lower Bound 0.645x10-4 m2 

Main bar’s Dimension 9.144 m 

Constraints on first 3 frequencies 
1 7ω ≥ ,

2 15ω ≥ , 
3

20ω ≥  Hz 

 

 

Table 2. Optimal design cross sections (cm
2
) for several methods (Weight does not consider added masses). 

 

Element No. Wang (2004) Grandhi (1993) Sedaghati (2002) Lingyum (2005) Present Work 

1 32.456 36.584 38.245 42.234 37.712 

2 16.577 24.658 9.916 18.555 9.959 

3 32.456 36.584 38.619 38.851 40.265 

4 16.577 24.658 18.232 11.222 16.788 

5 2.115 4.167 4.419 4.783 11.576 

6 4.467 2.070 4.419 4.451 3.955 

7 22.810 27.032 20.097 21.049 25.308 

8 22.810 27.032 24.097 20.949 21.613 

9 17.490 10.346 13.890 10.257 11.576 

10 17.490 10.346 11.452 14.342 11.186 

Weight(kg) 553.8 594.0 537.01 542.75 537.98 

 

The statistical results of 5 independent runs are shown in Tab. 4. It can be noticed a little deviation from the mean 

value of the independent runs. The result used for comparisons are the best one obtained. 

Fig. 4 shows the convergence iterations of the PSO algorithm for the 10-bar truss structure with added masses. 

 

Table 3. Optimized frequencies (Hz) with several methods for the 10-bar truss structure. 

 

Frequency No. Wang (2004) Grandhi (1993) Sedaghati (2002) Lingyum (2005) Present Work 

1 7.011 7.059 6.992 7.008 7.000 

2 17.302 15.895 17.599 18.148 17.786 

3 20.001 20.425 19.973 20.000 20.000 

4 20.100 21.528 19.977 20.508 20.063 

5 30.869 28.978 28. 173 27.797 27.776 

6 32.666 30.189 31.029 31.281 30.939 

7 48.282 54.286 47.628 48.304 47.297 

8 52.306 56.546 52.292 53.306 52.286 
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Table 4. Statistical results for the 5 independent runs of swarm optimizations for 10-bar truss structure 

 

Mean Mass of 

Swarm (kg) 

Standard 

Deviation 

No. of 

Particles 

Social 

Constant 

Cognitive 

Constant 

Velocity 

Momentum 

Mean No.  

of Iterations 

Tolerance for  

Convergence 

540.89 6.84 50 1.5 1.5 0.5 40 10-3 

 

 
 

Figure 4 – PSO iterations for 10-bar truss structure with added masses. 

 

4.2   52-bar space truss 
 

In this example a hemispherical space truss (like a dome) is optimized on shape and size with constraints in the first 

two natural frequencies. The space truss has 52 bars and non-structural masses of m=50 kg are added to the free nodes. 

The cross-sectional areas are permitted to vary between 0.0001 m
2
 and 0.001 m

2
. The shape optimization is performed 

taking into account that the symmetry should be kept in the design process. Each movable node is allowed to vary ± 2 

m. For the frequency constraint it is set that 
1 15.916ω ≤  Hz and 

2 28.649ω ≥  Hz. A sketch of the initial design is shown in 

Fig. 12 and Fig. 13. This example is considered to be a truss optimization problem with two natural frequency 

constraints and thirteen design variables (five shape variables plus eight size variables). 

 

 

 

 

 

 6 m 

4.2426 m 

4 m 

2.8284 m 

2 m 

 
 

Figure 12. Initial design of a 52-bar dome structure (top view). 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 

 

4.5 m 

6 m 

5.7 m 

 
 

Figure 13. Initial design of a 52-bar dome structure (lateral view). 

 

Table 12 shows the initial and final optimized coordinates and cross sectional areas and final mass, as well. It can 

be noticed that the PSO perform better than the other methods. PSO mass optimum is about 3.36% lighter than 

Lingyum at al. (2005) optimum. 

In Tab. 13 it is shown the final optimized frequencies (Hz) for the methods compared. It is noticed that any of the 

frequency constraints were violated.  

Table 14 shows the statistics of 5 independent runs for the 52-bars truss example and the parameters used for the 

PSO algorithm. 

 

Table 12. Optimal design cross section for several methods for the 52-bar space truss (weights does not consider added 

masses). 

 

Variable No. Initial Design Lin (1982) Lingyum (2005) Present Work 

ZA (m) 6.000 4.3201 5.8851 5.5344 

XB(m) 2.000 1.3153 1.7623 2.0885 

ZB (m) 5.700 4.1740 4.4091 3.9283 

XF (m) 2.828 2.9169 3.4406 4.0255 

ZF(m) 4.500 3.2676 3.1874 2.4575 

A1(cm
2
) 2.000 1.00 1.0000 0.3696 

A2(cm
2
) 2.000 1.33 2.1417 4.1912 

A3(cm
2
) 2.000 1.58 1.4858 1.5123 

A4(cm
2
) 2.000 1.00 1.4018 1.5620 

A5(cm
2
) 2.000 1.71 1.911 1.9154 

A6(cm
2
) 2.000 1.54 1.0109 1.1315 

A7(cm
2
) 2.000 2.65 1.4693 1.8233 

A8(cm
2
) 2.000 2.87 2.1411 1.0904 

Weight(kg) 338.69 298.0 236.046 228.381 

 

Table 13. Optimized frequencies (Hz) for several methods for the 52-bar space truss. 

 

Frequency No. Initial Design Lin (1982) Lingyum (2005) Present work 

1 22.69 15.22 12.81 12.751 

2 25.17 29.28 28.65 28.649 

3 25.17 29.28 28.65 28.649 

4 31.52 31.68 29.54 28.803 

5 33.80 33.15 30.24 29.230 
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Table 14. Statistical results for 5 independent runs of Swarm Optimization for the 52-bar space truss. 

 

Mean Mass 

of Swarm 

Standard 

Deviation 

No. of 

Particles 

Social 

Constant 

Cognitive 

Constant 

Velocity 

Momentum 

Mean No. 

of Iterations 

Tolerance for 

 Convergence 

234.3 5.22 70 1.5 1.5 0.5 161 10-3 

 

In Fig. 14, Fig. 15 and Fig. 16, the shape of initial design and the optimized solutions found by the literature are 

compared with that obtained in the present work. Again, the similar shapes of the final truss of the present work and that 

presented by Lingyum et al (2005)  is noticed. Since none of the papers presented the number of function evaluations, it 

is not performed here this type of comparison. 

 
 

Figure 14. Initial Design of a 52-bar dome structure. 

 

 
 

Figure 15. Optimized design of a 52-bar dome structure by Lingyum (2005). 

 

 
 

Figure 16. Optimized design of a 52-bar dome structure by present work. 

 

5.  FINAL REMARKS 

 

In this paper the problem of truss design optimization with frequency constraints was addressed. The constraints 

were treated as usual with penalty functions. It is well-known that this kind of optimization problem has high-nonlinear 

behavior regarding the frequency constraints especially for shape optimization, since eigenvalues are very sensitive to 

shape modifications. In the literature it was reported several methods that treat this problem using a gradient based 

formulation, however initial feasible design points are necessary to start the process. In this paper a new methodology is 

proposed based on a heuristic algorithm. The Particle Swarm Optimization Algorithm is referred in the literature as a 
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global optimizer with advantages in relation to other heuristic algorithms like Genetic ones. Some capabilities that make 

this Heuristic Algorithm attractive are its lower number of parameter necessary to set previously and its floating point 

treatment for the design variables. Another common feature to heuristic algorithms is that it requires just objective 

functions evaluations (it is not required objective function gradients), which allows the method to deal with this kind of 

problem (symmetrical trusses with equal eigenvalues) without any modifications. Another important feature is the fact 

that the algorithm works with a population and random parameters which allows exploration/exploitation capabilities 

and escape from local minima in the search process. It was present two examples of increasing difficulty which were 

compared with results presented in the literature. In an engineering point of view, the method performed well in the four 

cases, showing to be promising. Besides, the method got better results than that reported in the literature in the last 

example. In this last example, compared with the NHGA algorithm (Lingyum et al., 2005), the method needed less 

function evaluations (about 11270 compared to 13519 from Lingyum et al., 2005). 
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