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Abstract. In the present work, the Liou and Steffen Jr. and the Radespiel and Kroll schemes are implemented, on a 
finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in the 
two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step procedure. This technique has proved excellent gains in terms of convergence ratio 
as reported in Maciel. The algorithms are applied to the solution of the steady state physical problem of the supersonic 
flow along a compression corner. In this paper, the second paper of this series (RESULTS), the numerical solutions 
obtained with both schemes, in their first and second order accuracies, are presented and analyzed. The results have 
shown that the Radespiel and Kroll scheme using Barth and Jespersen, Van Leer, Van Albada and Superbee nonlinear 
limiters presents the most accurate values to the shock angle of the oblique shock wave generated at the compression 
corner. 
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1. INTRODUCTION 
 
 Conventional non-upwind algorithms have been used extensively to solve a wide variety of problems (Kutler, 1975, 
and Steger, 1978). Conventional algorithms are somewhat unreliable in the sense that for every different problem (and 
sometimes, every different case in the same class of problems) artificial dissipation terms must be specially tuned and 
judicially chosen for convergence. Also, complex problems with shocks and steep compression and expansion gradients 
may defy solution altogether. 
 Upwind schemes are in general more robust but are also more involved in their derivation and application. Some 
upwind schemes that have been applied to the Euler equations are the Liou and Steffen Jr. (1993) and the Radespiel and 
Kroll (1995) ones. These algorithms are described in details in Maciel (2009). 
 Algorithms for solving the Euler equations using a perfect gas model on structured grids in two and three 
dimensions have become widespread in recent years (Turkel and Van Leer, 1984, and Riggins, Walters and Pelletier, 
1988). However, these algorithms have shown difficulties in predicting satisfactory results around complex geometries 
due to mesh irregularities. As a result, attention has turned to the development of solution algorithms on arbitrary 
unstructured grids. Impressive results have been obtained for a wide range of problems (Mavriplis and Jameson, 1987, 
and Barth and Jespersen, 1989). 
 One problem associated with unstructured meshes is the increased difficulty in obtaining smooth higher order spatial 
approximations to state data at cell interfaces. Two methods have been used to obtain higher order accuracy on 
unstructured meshes. A method used by several researchers for cell vertex schemes (Stoufflet et al., 1987, and 
Whitaker, 1988) was applied to obtain higher order accuracy in a procedure analogous to MUSCL differencing on a 
structured mesh. A conventional structured mesh limiter can be employed in this scheme to obtain approximately 
monotone results near flow discontinuities. The second method, which was proposed by Barth and Jespersen (1989), 
linearly reconstructs the cell averaged data and imposes a monotone preserving limiter to achieve smooth results near 
flow discontinuities. 
 On an unstructured algorithm context, Maciel (2007a,b) have presented a work involving the numerical 
implementation of four typical algorithms of the Computational Fluid Dynamics community. The Roe (1981), the 
Steger and Warming (1981), the Van Leer (1982) and the Harten (1983) algorithms were implemented and applied to 
the solution of aeronautical and of aerospace problems, in two-dimensions. The Euler equations in conservative form, 
employing a finite volume formulation and an unstructured spatial discretization, were solved. More comments of this 
work are reported in Maciel (2009). 
 Following the studies of 2007, Maciel (2008a,b) have presented a work involving the numerical implementation of 
more three typical algorithms of the Computational Fluid Dynamics community. The Frink, Parikh and Pirzadeh 
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(1991), the Liou and Steffen Jr. (1993), and the Radespiel and Kroll (1995) algorithms were implemented and applied to 
the solution of aeronautical and aerospace problems, in two-dimensions. The Euler equations in conservative form, 
employing a finite volume formulation and an unstructured spatial discretization, were solved. More comments of this 
work are reported in Maciel (2009). 
 In the present work, the Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes are implemented, 
on a finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in 
the two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen (1989) and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step. This technique has proved excellent gains in terms of convergence ratio as reported 
in Maciel (2005 and 2008c). The algorithms are applied to the solution of the steady state physical problem of the 
supersonic flow along a compression corner. 
 In this paper, the second part of this series (RESULTS), the numerical solutions obtained with both schemes, in their 
first and second order accuracies, are presented and analyzed. The results have shown that the Radespiel and Kroll 
(1995) scheme using Barth and Jespersen, Van Leer, Van Albada and Superbee nonlinear limiters presents the most 
accurate values to the shock angle of the oblique shock wave generated at the compression corner. 
 An unstructured discretization of the calculation domain is usually recommended to complex configurations, due to 
the easily and efficiency that such domains can be discretized (Mavriplis, 1990, and Pirzadeh, 1991). However, the 
unstructured mesh generation question will not be studied in this work. 
 
2. RESULTS 
 
 Tests were performed in a microcomputer with processor INTEL CELERON, 1.5GHz of “clock”, and 1.0Gbyte of 
RAM. Converged results occurred to four (4) orders of reduction in the maximum residual value. The entrance angle is 
equal to 0.0 for the compression corner problem. The ratio of specific heats, , assumed the value 1.4. The reference to 
the limiters is abbreviated in this work: Barth and Jespersen limiter (BJ), Van Leer limiter (VL), Van Albada limiter 
(VA), Superbee limiter (SB) and -limiter (BL). 
 
2.1. Compression corner problem – Qualitative analyses 

 
 

 

 
           Figure 1. Compression corner configuration.                              Figure 2. Compression corner mesh. 
 
 The compression corner configuration is described in Fig. 1. The corner inclination angle is 10o. An algebraic mesh 
of 70x50 points or composed of 3,381 rectangular cells and 3,500 nodes was initially generated. Later, the connectivity, 
the neighboring, the nodes, and the ghost tables were constructed to yield a mesh of triangles, composed of 6,762 cells 
and 3,500 nodes. This mesh is shown in Fig. 2. 
 Figure 3 exhibits the pressure contours obtained by the first order accuracy version of the Liou and Steffen Jr. 
(1993) scheme. Figures 4 to 6 show the second order accuracy versions of the Liou and Steffen Jr. (1993) scheme. 
Figures 4 to 6 show the solutions obtained by the BJ, VL, and VA nonlinear limiters, respectively. The SB and BL 
limiters did not yield converged solutions. As can be observed from the second order solutions, they present pressure 
oscillations, which damage the uniformity of the solutions. As can also be noted, the second order versions of the Liou 
and Steffen Jr. (1993) scheme present smaller oblique shock wave thickness than the first order version, as expected. 
The second order version of the Liou and Steffen Jr. (1993) scheme employing the VA nonlinear limiter presents the 
most severe pressure field. 
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                   Figure 3. Pressure contours (LS/1a).                                    Figure 4. Pressure contours (LS/2a/BJ). 

  
                Figure 5. Pressure contours (LS/2a/VL).                                Figure 6. Pressure contours (LS/2a/VA). 
 
 Figure 7 exhibits the Mach number contours obtained by the first order accuracy version of the Liou and Steffen Jr. 
(1993) scheme. Figures 8 to 10 show the second order accuracy versions of the Liou and Steffen Jr. (1993) scheme. 
Figures 8 to 10 show the solutions obtained by the BJ, VL, and VA nonlinear limiters, respectively. As can be observed 
from the second order solutions, they present Mach number oscillations, which damage the uniformity of the solutions. 
As can also be noted, the second order versions of the Liou and Steffen Jr. (1993) scheme present smaller oblique shock 
wave thickness than the first order version, as expected. The second order version of the Liou and Steffen Jr. (1993) 
scheme employing the VL nonlinear limiter presents the most intense Mach number field. 

  
                Figure 7. Mach number contours (LS/1a).                          Figure 8. Mach number contours (LS/2a/BJ). 
 
 Figure 11 exhibits the wall pressure distributions obtained by the first and second order versions of the Liou and 
Steffen Jr. (1993) scheme using symbols to illustrate in how many cells these versions capture the shock discontinuity. 
They are compared with the oblique shock wave theory results. As can be observed, the first order solution of the Liou 
and Steffen Jr. (1993) scheme is smooth, without pressure oscillations, capturing the pressure discontinuity in four cells. 
On the other hand, all second order version solutions of the Liou and Steffen Jr. (1993) scheme present oscillations at 
the corner, originating a pressure peak, which damages the quality of the solution. Figure 12 shows the wall pressure 
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distributions obtained by the second order versions of the Liou and Steffen Jr. (1993) scheme again using symbols to 
illustrate in how many cells these versions capture the shock discontinuity. As noted, these versions of the Liou and 
Steffen Jr. (1993) scheme capture the shock discontinuity using three cells, which is a good result in terms of second 
order schemes. 

  
            Figure 9. Mach number contours (LS/2a/VL).                      Figure 10. Mach number contours (LS/2a/VA). 

  
            Figure 11. Wall pressure distributions (LS1).                        Figure 12. Wall pressure distributions (LS2). 
 
 Figure 13 exhibits the pressure contours obtained by the Radespiel and Kroll (1995) scheme in its first order version. 
Figures 14 to 18 show the pressure contours obtained by the BJ, VL, VA, SB, and BL nonlinear limiters. As can be 
observed, the BJ, VA, and BL second order solutions of the Radespiel and Kroll (1995) scheme present an oblique 
shock wave thickness smaller than those obtained by the first order version and by the VL and SB second order versions 
of the Radespiel and Kroll (1995) scheme. The former solutions also present small pressure oscillations, which did not 
damage the solution quality. The most severe pressure fields are also obtained by the BJ, VA, and BL second order 
versions of the Radespiel and Kroll (1995) scheme.  

  
                  Figure 13. Pressure contours (RK/1a).                              Figure 14. Pressure contours (RK/2a/BJ). 
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               Figure 15. Pressure contours (RK/2a/VL).                          Figure 16. Pressure contours (RK/2a/VA). 

  
               Figure 17. Pressure contours (RK/2a/SB).                           Figure 18. Pressure contours (RK/2a/BL). 
 
 Figure 19 exhibits the Mach number contours obtained by the Radespiel and Kroll (1995) scheme in its first order 
version. Figures 20 to 24 show the Mach number contours obtained by the BJ, VL, VA, SB, and BL nonlinear limiters. 
As can be observed, all second order solutions of the Radespiel and Kroll (1995) scheme present an oblique shock wave 
thickness smaller than that obtained by the first order version of the Radespiel and Kroll (1995) scheme. A behavior 
somewhat different from the pressure contour analyze. The most significant results should be considered the pressure 
solutions because represent the reference variable to aerospace vehicle design (the pressure). All solutions present small 
Mach number oscillations, which did not severely damage the solution quality. The most intense Mach number field is 
obtained by the SB second order version of the Radespiel and Kroll (1995) scheme. 

  
             Figure 19. Mach number contours (RK/1a).                     Figure 20. Mach number contours (RK/2a/BJ).  
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        Figure 21. Mach number contours (RK/2a/VL).                   Figure 22. Mach number contours (RK/2a/VA). 

  
         Figure 23. Mach number contours (RK/2a/SB).                  Figure 24. Mach number contours (RK/2a/BL). 
 
 Figure 25 shows the wall pressure distributions obtained by the first and second order versions of the Radespiel and 
Kroll (1995) scheme. They are compared with the oblique shock wave theory results. As observed, the first order 
version of the Radespiel and Kroll (1995) scheme presents a smooth and oscillation-free wall pressure profile. The 
shock is captured in four cells. All second order wall pressure profiles of the Radespiel and Kroll (1995) scheme present 
oscillations at the corner. The second order wall pressure profile generated by the VA nonlinear limiter is better than the 
others. Figure 26 exhibits the wall pressure distributions generated by the second order versions of the Radespiel and 
Kroll (1995) scheme using BJ, VL, and VA nonlinear limiters. The shock discontinuity is captured within four cells. 
Figure 27 shows the wall pressure distributions obtained by the SB and BL nonlinear limiters. The pressure oscillations 
at the corner for these two limiters are bigger than for the BJ, VL, and VA nonlinear limiters. The shock discontinuity is 
also captured within four cells. With these results, it is possible to conclude that the Liou and Steffen Jr. (1993) scheme 
captures more accurately the shock discontinuity than the Radespiel and Kroll (1995) scheme, considering their second 
order versions. Figure 28 exhibits the best wall pressure distribution, among all second order versions of the Liou and 
Steffen Jr. (1993) and of the Radespiel and Kroll (1995) schemes, obtained by the Radespiel and Kroll (1995) scheme 
using VA limiter. 

  
           Figure 25. Wall pressure distributions (RK1).                       Figure 26. Wall pressure distributions (RK2). 
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           Figure 27. Wall pressure distributions (RK3).                       Figure 28. Wall pressure distributions (RK4). 
 
2.2. Compression corner problem – Quantitative analyses – Shock angle of the oblique shock wave and 
computational costs 
 
 One way to quantitatively verify if the solutions generated by each scheme are satisfactory consists in determining 
the shock angle of the oblique shock wave, , measured in relation to the initial direction of the flow field. Anderson Jr. 

(1984) (pages 352 and 353) presents a diagram with values of the shock angle, , to oblique shock waves. The value of 
this angle is determined as function of the freestream Mach number and of the deflection angle of the flow after the 
shock wave, . To the compression corner problem,  = 10º (ramp inclination angle) and the freestream Mach number is 
3.0, resulting from this diagram a value to  equals to 27.5º. 
 Using a transfer in Figures 3 to 6 (pressure contours), it is possible to obtain the values of  to each variant of the 
Liou and Steffen Jr. (1993) scheme, as well the respective errors, shown in Tab. 1. The Liou and Steffen Jr. (1993) 
scheme using the BJ limiter has yielded the best result, with an error of 0.36%. The results obtained with the Liou and 
Steffen Jr. (1993) scheme presented a maximum error less than 1.10%, but none of them presented an exact value to the 
shock angle. 

 
Table 1. Shock angle of the oblique shock wave and percentage error (LS). 

 
Algorithm () Error (%) 

Liou and Steffen Jr. (1993) – 1a 27.8 1.09 
Liou and Steffen Jr. (1993) – 2a – BJ 27.4 0.36 
Liou and Steffen Jr. (1993) – 2a – VL 27.8 1.09 
Liou and Steffen Jr. (1993) – 2a – VA 27.2 1.09 

 
 Using now a transfer in Figures 13 to 18 (pressure contours), it is possible to obtain the values of  to each variant of 
the Radespiel and Kroll (1995) scheme, as well the respective errors, shown in Tab. 2. The Radespiel and Kroll (1995) 
scheme using the BJ, VL, VA, and SB limiters have yielded the exact values to the shock angle, with error of 0.00%. 
The results obtained with the Radespiel and Kroll (1995) scheme presented a maximum error less than 3.30%, but four 
solutions presented exact values to the shock angle. 
 

Table 2. Shock angle of the oblique shock wave and percentage error (RK). 
 

Algorithm () Error (%) 
Radespiel and Kroll (1995) – 1a 28.4 3.27 

Radespiel and Kroll (1995) – 2a – BJ 27.5 0.00 
Radespiel and Kroll (1995) – 2a – VL 27.5 0.00 
Radespiel and Kroll (1995) – 2a – VA 27.5 0.00 
Radespiel and Kroll (1995) – 2a – SB 27.5 0.00 
Radespiel and Kroll (1995) – 2a – BL 27.7 0.73 

  
 Table 3 presents the computational costs of the algorithms of Liou and Steffen Jr. (1993) and of Radespiel and Kroll 
(1995) in their first and second order versions. Considering only the second order versions of each algorithm, the most 
expensive is the scheme of Radespiel and Kroll (1995) using the VA limiter, whereas the cheapest is due to Liou and 
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Steffen Jr. (1993) using BJ limiter. The Liou and Steffen Jr. (1993) algorithm using the BJ limiter is 12.5% cheaper than 
the Radespiel and Kroll (1995) algorithm using the VA limiter. 
 

Table 3. Computational cost of the numerical algorithms. 
 

Algorithm Cost(1) 
Liou and Steffen Jr. (1993) – 1a 0.0000201 

Liou and Steffen Jr. (1993) – 2a – BJ 0.0001096 
Liou and Steffen Jr. (1993) – 2a – VL 0.0001224 
Liou and Steffen Jr. (1993) – 2a – VA 0.0001227 

Radespiel and Kroll (1995) – 1a 0.0000207 
Radespiel and Kroll (1995) – 2a – BJ 0.0001108 
Radespiel and Kroll (1995) – 2a – VL 0.0001220 
Radespiel and Kroll (1995) – 2a – VA 0.0001233 
Radespiel and Kroll (1995) – 2a – SB 0.0001189 
Radespiel and Kroll (1995) – 2a – BL 0.0001182 

       (1)
: Measured in seconds/per cell/per iteration. 

 
3. CONCLUSIONS 
 
 In the present work, the Liou and Steffen Jr. (1993) and the Radespiel and Kroll (1995) schemes are implemented, 
on a finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in 
the two-dimensional space. Both schemes are flux vector splitting ones. These schemes are implemented in their second 
order accuracy versions employing the reconstruction linear method of Barth and Jespersen (1989) and their results are 
compared with their first order accuracy versions and with theoretical results. Five nonlinear flux limiters are studied: 
Barth and Jespersen (minmod like), Van Leer, Van Albada, Superbee and -limiter. The time integration uses a Runge-
Kutta method of five stages and is second order accurate. Both algorithms are accelerated to the steady state solution 
using a spatially variable time step. This technique has proved excellent gains in terms of convergence ratio as reported 
in Maciel (2005 and 2008c). The algorithms are applied to the solution of the steady state physical problem of the 
supersonic flow along a compression corner. 
 The results have shown that the Radespiel and Kroll (1995) scheme using Barth and Jespersen, Van Leer, Van 
Albada, and Superbee nonlinear limiters presents the most accurate values to the shock angle of the oblique shock wave 
generated at the compression corner. The most severe pressure field generated by the Liou and Steffen Jr. (1993) 
scheme was obtained when using the VA nonlinear limiter, whereas the Radespiel and Kroll (1995) scheme presented 
the most severe pressure field when using BJ, VA and BL nonlinear limiters. Moreover, the most intense Mach number 
field generated by the Liou and Steffen Jr. (1993) scheme was obtained when using the VL nonlinear limiter, whereas 
the Radespiel and Kroll (1995) scheme presented the most intense Mach number field when using SB nonlinear limiter. 
In terms of pressure contours – the reference variable to aerospace vehicle design – the second order versions of the 
Liou and Steffen Jr. (1993) scheme present smaller shock wave thickness than the first order version. Still in terms of 
pressure contours, the Radespiel and Kroll (1995) scheme using BJ, VA and BL nonlinear limiters detects smaller shock 
wave thickness than the first order version of this algorithm. These nonlinear limiters also yield smaller shock wave 
thickness than the Radespiel and Kroll (1995) scheme using VL and SB nonlinear limiters. The wall pressure 
distributions of both schemes, in their second order versions, present oscillations at the corner, characterizing a pressure 
peak at this region. The most acceptable solution was due to Radespiel and Kroll (1995) using VA nonlinear limiter. 
The Liou and Steffen Jr. (1993) scheme, in its second order versions, captures the shock discontinuity using three cells, 
whereas the Radespiel and Kroll (1995) scheme, in its second order versions, captures the shock discontinuity in four 
cells. This means that the Liou and Steffen Jr. (1993) scheme is better than the Radespiel and Kroll (1995) scheme in 
terms of capturing the shock discontinuity. The shock angle of the oblique shock wave is exactly determined by the 
Radespiel and Kroll (1995) scheme using BJ, VL, VA and SB nonlinear limiters, with an error of 0.00%, whereas only 
the Liou and Steffen Jr. (1993) scheme using BJ nonlinear limiter presents the closest solution, with an error of 0.36%. 
 In terms of computational cost, considering only the second order versions of each algorithm, the most expensive is 
the scheme of Radespiel and Kroll (1995) using the VA limiter, whereas the cheapest is due to Liou and Steffen Jr. 
(1993) using BJ limiter. The Liou and Steffen Jr. (1993) algorithm using the BJ limiter is 12.5% cheaper than the 
Radespiel and Kroll (1995) algorithm using the VA limiter, which is a negligible difference. 
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