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Abstract. Carbon nanotubes are considered the stiffest material known. In addition to high stiffness, around 1.0 TPa, 
this class of new materials, with diameter around 1.0 nm and length of 1.0 �m, exhibts remarkable electrical and 
thermal proprieties. With such great properties, this class of materials  is the natural choice for high performance 
materials. The problem, however, rises when the experimental data are compared against each other. The large 
variability of experimental data lead to development of a new set of numerical simulations called molecular mechanics. 
Such numerical technique results is a “simbiotic” association of molecular dynamics and solid mechanics, in special 
the finite element method. This papers deals with a molecular mechanics simulation of single-walled carbon 
nanotubes. Three main carbon nanotubes configurations were simulated, i.e armchair, zigzag and chiral. From te 
concept of representative unit cell, and applying the molecular mechanics principles the carbon nanotubes stiffeness 
were predicted. It was showed that not only the carbon nanotube configuration has influence on stiffness but radius is 
also a important variable. By varying the radius the Young’s modulus changed from 0.95 TPa to 1.03 TPa. The 
numerical simulations were in good agreement  with those presented in literature.  
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1. INTRODUCTION  
 

According to Saito et al. (2005), carbon nanotube is a honeycomb lattice rolled into a cylinder. What do this class of 
material special are its dimensions and consequently its mechanical and electrical properties. In general, a carbon 
nanotube diameter is of nanometer size and its length can be more than 1�m. As mentioned by Saito and his colleagues, 
nanotube diameter is much smaller than most advanced semiconductors devices developed so far. Moreover, consistent 
with Kalamkarov et al. (2006), carbon nanotubes (CNT) are the stiffest known materials along with a predicted strength 
of about 100 times that of steel at only one-sixth of the weight. With regard to their thermal properties, carbon 
nanotubes are thermally stable up to 2800 C (in vacuum), exhibit a thermal conductivity about twice as high as 
diamond, and may exhibit a capacity to carry electric current a thousand times better than copper wires. With such 
promising properties, CNT are natural candidates for reinforcement of advanced composites.  Nevertheless, variability 
form experimental data obtained from CNT is a problem. 

As stated by Natsuki et al. (2004), experimental methods for measuring the mechanical properties of CNTs are 
mainly based on the techniques of transmission electron microscopy (TEM) and atomic force microscopy (AFM). They 
described the results obtained by Treacy et al. for multi-walled carbon nanotubes (MWNT). According to them, by 
measuring thermal vibration using TEM, Treacy et al obtained a Young modulus of 1.8±0.9TPa. Natsuki et al. (2004) 
also reported a slightly lower value of 1.28±0.59 TPa with little dependence of nanotube diameter obtained by Wong et 
al. using the AFM tip to bend anchored MWNTs. A set of experiments performed by Yu et al. (2000) in MWNT lead to 
data ranging from 11 to 63 GPa and 0.27 to 0.95 TPa to tensile strength and Young’s modulus, respectively.  

The results obtained for single-walled carbon nanotubes (SWNTs) follow the same pattern. Krishnan et al. (1998) 
have reported a study on single-walled carbon nanotubes (SWNT) using the TEM technique. The SWNT had a diameter 
range of 1.0–1.5 nm, and the elastic modulus was measured to be the mean value of 1.30±0.4 TPa. Yu et al. (2000) have 
also obtained the mechanical responses of SWNT bundles under tensile loading. The values of elastic modulus ranged 
from 0.32 to 1.47 TPa with a mean value of 1.02 TPa, and a tensile strength from 13 to 53 GPa. Lourie and Wagner 
(1998) obtained the axial Young’s modulus for a series of temperatures by micro-Raman spectroscopy from 
measurements of cooling-induced compressive deformation of nanotubes embedded in an epoxy matrix. At low 
temperature, � 80 K, Lourie and Wagner (1998) got a 3.0 TPa axial Young’s modulus for SWNT with an average radius 
of 0.7 nm, and 2.4 TPa for MWNTs with an average radius of 5–10nm. Xiao et al. (2005), however, reported for SWNT 
the tensile modulus ranged from 0.27 to 3.6 TPa, while the ultimate strength varied from 11 to 200 GPa.  With such 
variability on these results, Xiao et al (2005) concluded that CNT, single or multi-walled, elastic properties are highly 
dependent on its structure.  

Due to the difficulties in experimental characterization of nanotubes, computer simulation has been regarded as a 
powerful tool for modeling the properties of nanotubes. The fundamental relations governing the geometry of CNT 
were described by Dresselhaus et al (1995). They were able to explain the mathematical expression that relates the 
graphene sheet geometry in a honeycomb-like design and the carbon nanotubes three main configurations, i.e. chiral, 
zigzag and armchair. By doing it, they opened the possibility to CNT computer simulations. For Xiao et al (2005), the 



large majority of numerical and analytical approaches can be classified into one of two categories: the “bottom up” 
approach based on quantum/molecular mechanics including the classical molecular dynamics (MD), and the “top 
down” based on continuum mechanics. A third category, however, can be established; it is called the multi-scale 
methods, where the continuum mechanics models are coupled to MD expressions. Wang et al. (2003) reported that MD 
formulations were probably the most popular method currently employed for nano-scale analysis, due to its availability 
of accurate interatomic potentials for a range of materials.  However, a critical issue on MD simulations remains, i.e. 
temperature. The temperature induced high frequency molecular thermal vibration, on scale of 1015 Hz, makes difficult 
to estimate strains, even worst, limit the deformation calculations to nano-seconds. In addition to this problem,   

Liu et al. (2006) mentioned that in most applications nanoscale materials are used in association  to other 
components that are larger, and have different response times, thus operating at different time and length scales. 
Furthermore, single scale methods such as ab initio quantum mechanical methods or molecular dynamics (MD) will 
have difficulty in analyzing such hybrid structures due to the limitations in terms of the time and length scales that each 
method is confined to. Yet, the length and time scales that can be probed using MD are still fairly limited. For the study 
of nanoscale mechanics and materials, Liu et al. (2006) suggested model up to a scale of several microns, consisting of 
billions of atoms, which is too large for MD simulations to-date. Hence, there is a need to develop multi-scale 
approaches for this class of problems.  

Li and Chou (2006) defined the multi-scale modeling technique as a combination of the atomistic molecular 
structural mechanics approach (Li and Chou, 2003) and the continuum finite element method (Zienkiewicz and Taylor, 
1989). This approach was also implemented by Meo and Rossi (2006), where the elements selected were both non-
linear elastic springs and linear elastic torsional spring. As mentioned by them, the non-linear elastic spring element was 
applied due to the lack of information about the sectional properties of carbon-carbon bond. Furthermore, the torsional 
spring element was used to overcome the problems with bond angles bending. They were able to simulate the three 
main SWNT configurations, i.e. armchair, zigzag and chiral, and graphene sheets. Furthermore, the geometric 
description of SWNT of their model was based on Cartesian equations proposed by Koloczek et al. (2001). Such 
approach saved considerable computational efforts during the mesh generation. Their predictions for the grapheme 
sheets Young’s modulus were in good agreement with the ones published in literature, i.e. �1.03 TPa.  After simulating 
several SWNT configurations, Meo and Rossi (2006) found out that their predictions were in good agreement with 
several authors. Although the results provided by Meo and Rossi (2006) were in good agreement with several papers 
published in literature, their model was limited to uniaxial tensile problems.  

To overcome such problem Sun and Zhao (2005) proposed a model based on molecular-mechanics and finite 
element method. Sun and Zhao (2005) made usage of two types of elements. The first one was a chemical bond element 
which represented the intra-molecular potential energy of stretching, bending and torsion energies. This element was 
based on a two-node elastic rod element with an elastic joint in each end. The second element was a Lennard-Jones 
element which stood for the inter-molecular potential energy. In this case, a spring element with non-linear stiffness 
derived from the Lennard-Jones energy was applied. Sun and Zhao (2005) went further, by modifying the Morse 
potential function they were able to modeling the C-C chemical bond breakage. In sum, they were up of modeling 
stiffness and strength simultaneously. However, the data obtained, 0.4 TPa for stiffness and between 77-101 GPa for 
strength, were below than the usual results published in literature. A possible explanation for such behavior can be the 
excess of compliance introduced during stiffness matrix derivation. This hypothesis is corroborated by Pantano et al. 
(2004) that related the bending stiffness with the mean radius of the tube and its total wall thickness. Note that for Sun 
and Zhao (2005) the tensile stiffness was practically constant with the increase on nanotube diameter.  

The work developed by Huang et al. (2006) gave a step forward by introducing the total energy of the system 
expressed as a function of the location of the atomic nucleons. The same analogy between stretching and bending 
elements and the atoms bond were also employed. Furthermore, they introduced a third analogy called inversion. By 
considering only stretching and bending, their results were similar to Sun and Zhao (2005), but with the introduction of 
inversion the results converged to a 1.059 TPa value. Tserpes and Papanikos (2005) employed beam elements in a 
three-dimensional (3D) space where stretching, bending, out-of-plane torsion and dihedral angle torsion were 
considered. Such model brought about results with good agreement with the literature with minimal computational 
efforts. 

In this paper, the concept of molecular structural mechanics described Li and Chou (2003) associated to the three-
dimensional finite element model introduced by Tserpes and Papanikos (2005) is employed to predict the SWNT 
stiffness. Numerical simulations considering the main configurations, i.e. armchair, zigzag and chiral, are performed. A 
parametric study on wall thickness, diameter and chirality’s effects on stiffness is also objective of this paper. 
  
2. MOLECULAR MECHANICS 
 

Dresselhaus et al. (1995) described SWNT in terms of the tube diameter (d) and its chiral angle (�). The chiral 
vector (Ch) was defined in terms of the graphene sheet lattice translation integer indices (n,m) and the unit vectors 
(a1,a2) as follows: 
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where the unit vectors in (x,y) coordinates are defined as: 
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the length of the unit vector a is equals to 2.46 angstroms, or 1.73 times the carbon-carbon distance, i.e. 1.421 
angstroms. The nanotube circumference (p) was defined by: 
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from simple geometry, it is possible to obtain the nanotube diameter (d), as: 
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and the chiral angle (�), between 0 and �/6 rad, was described by Dresselhaus et al. (1995) by 
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Figure 1 illustrates the chiral angle and vector, respectively. Meanwhile, in figure 2 the three main SWNT 

configurations, i.e. armchair, zigzag and chiral, are described. 
 

 
Figure 1. Chiral angle and vector representation. (Li  and Chou, 2003) 

 
In the molecular structural mechanics approach, a single-walled carbon nanotube is simulated as a space frame 

structure, with the covalent bonds and carbon atoms as connecting beams and joint nodes, respectively. If the beam 
elements simulating the covalent bonds are assumed to be of round section, then only three stiffness parameters, i.e., the 
tensile resistance EA, the flexural rigidity EI and the torsion stiffness GJ, need to be defined for deformation analysis. 
Li and Chou (2003), based on the energy equivalence between local potential energies in computational chemistry and 
elemental strain energies in structural mechanics, established a direct relationship between the structural mechanics 
parameters and the molecular mechanics force field constants. Such parameters are mathematically represented by: 
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where L denotes the bond length, and kr , k� and k� are the force field constants in molecular mechanics. By assuming a 
circular beam cross section with diameter d, and setting A =�d2/4, I= �d4/64 and J= �d4/32, Tserpes and Papanikos 
(2005) obtained the following expressions: 
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Figure 2. SWNT configurations and their respective caps (Kalamkarov et al., 2006) 
 
As an illustrative example, Figure 3 shows the equivalence of molecular mechanics and structural mechanics for 

covalent and non-covalent interactions between carbon atoms. 
 

 
 

Figure 3. Equivalence between molecular and structural mechanics. (a) molecular mechanics; (b) structural 
mechanics (Kalamkarov et al., 2006) 
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Li and Chou (2006) also proposed that for simulations of Van der Waals interactions between nested nanotube 

layers, a truss rod model was introduced by Li and Chou (2003). This model is based on the Lennard-Jones “6-12” 
potential and the van der Waals force between two atoms in the nearest neighboring tube layers can be written as 
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where, r is the interatomic distance, � and � are the Lennard-Jones parameters. According to Li and Chou (2006), the 
activation of a truss rod is determined by the distance between the two atoms in the neighboring tube layers. If the 
distance is less than 2.5�, a truss rod is assumed to be activated. 

 
3. NUMERICAL SIMULATIONS AND ANALYSIS 

 
The carbon-carbon bonds are simulated by a beam element with six degrees-of-freedom (DOF), i.e. three 

translations and three rotations, and length of 0.1421 nm as suggested by Tserpes and Papanikos (2005). To be able to 
generate each group of SWNT, i.e. armchair, zigzag and chiral a macro subroutine was developed and implemented into 
a commercial finite element commercial code named ANSYS V.10. In the present model, the kr , k� and k� constants are 
from Li and Chou (2003), and  their values are  6.52x10-7 N nm rad-1, 8.76x10-10 N nm rad-2 and 2.78x10-10 N nm rad-2, 
respectively. Figure 4 shows not only the model mesh for each SWNT group, but it also indicates the boundary 
conditions. The boundary conditions impositions are similar to load cases I and II described to Odegard et al. (2002). 
First, sub marginal nodes on one side of the generated nanotube were completely constrained, and them a prescribed 
displacement on axial direction was imposed on the nodes on the other side of the SWNT. Note that varying boundary 
conditions from imposing restrictions on axial directions only to constraining all DOFs do not have significant effect on 
reaction forces or nanotube deformation for the range of lengths used.  

 

 
Figure 4. SWNT mesh and imposed boundary conditions. (a) (8,8) Armchair, (b) (14,0) zigzag, (c) (11,5) Chiral 



The nanotubes generated varied from 112 atoms and 162 C-C bonds for the (4,2) chiral configuration to 623 atoms 
and 908 C-C bonds for the (17,9) chiral configuration. Table 1 shows the size of the Finite Element models for the 
nanotubes simulated, note that the number of nodes is corresponds to the number of atoms and the number of beam 
elements corresponds to the number of C-C bonds. 

 
Table 1. Size of the Finite Element models 

 

Configuration Chirality 
(n,m) 

Number of 
unit cells 

Total length 
[nm] 

Number of 
Nodes 

Number of 
Beams  

(3,3) 10 2.3382 120 174 
(5,5) 10 2.3382 200 290 
(8,8) 10 2.3382 320 464 

(11,11) 10 2.3382 440 638 
Armchair 

(13,13) 10 2.3382 520 754 
(5,0) 6 2.4157 120 175 
(9,0) 6 2.4157 216 315 
(14,0) 6 2.4157 336 490 
(19,0) 6 2.4157 456 665 

Zigzag 

(23,0) 6 2.4157 552 805 
(4,2) 2 2.1854 112 162 
(6,4) 1 1.8130 152 218 
(11,5) 1 2.0123 268 386 
(14,8) 1 2.7255 496 722 

Chiral 

(17,9) 0.3 2.8986 623 908 
 
Researchers such as  Yakobson et al. (1996), Lu (1997), Hernandez at al. (1998), Odegard et al. (2002), Li and Chou 

(2003), Pantano and Parks (2004) agree that SWNT wall thickness has direct effect on stiffness. Therefore, to be able to 
exam how accurate the model’s predictions are a series of simulations were performed considering these author’s wall 
thickness and the results compared against their data. The three groups of SWNT are investigated, each one represented 
for a specific case, i.e. armchair (8,8), zigzag (14,0) and chiral  (11,5).  In Table 2 the results are summarized, while 
Figure 5 is the graphical representation of such data for the armchair (8,8) configuration. 

 
Table 2: The wall thickness effect on stiffness 

 
Present Work – Young’s 

Modulus [TPa] 
Investigators Method Used 

Young's 
Modulus 

[TPa] 

Wall 
thickness 

[nm] Armchair 
(8,8) 

Zigzag 
(14,0) 

Chiral 
(5,11) 

Yakobson et al.  Molecular Dynamics 5.5 0.066 5.282 5.298 4.962 
Pantano et al. Continuum Shell Modeling 4.84 0.075 4.648 4.662 4.367 
Li and Chou Stiffness Matrix 1.01 0.34 1.025 1.028 0.963 
Lu Molecular Dynamics 0.974 0.34 1.025 1.028 0.963 
Hernandez et al. Tight binding MD 1.24 0.34 1.025 1.028 0.963 
Odegard et al. Equivalent-continuum modeling -(1) 0.69 0.505 0.507 0.475 
Tserpes and Papanikos Finite Element Method -(1) 0.147 2.377 2.385 2.423 
Present Work Finite Element Method -(1) 0.1466 2.378 2.385 2.234 

(1): these authors did not propose a single value for the Young’s Modulus 
 

The main difference on the results of the present work from the results from Tserpes and Papanikos are those for the 
chiral configuration. The difference may be caused by the nanotube length used. In the present work, as only unit cells 
of nanotube were used, the length of the SWNT’s was taken as the distance between two homologous nodes at the unit 
cell in the two ends of the nanotube. This is very intuitive for the Armchair and Zigzag nanotubes, but, as the sub 
marginal nodes for the Chiral nanotube do not lie in the same sectional plane, the value of the actual length of nanotube 
becomes a hard task if unit cells are not used. The correct value is important when the calculation is done with a small 
length of SWNT’s and to overcome this problem the use of a long nanotube would have the effect of the length 
diminished on the calculation of Young’s modulus. 
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Figure 5. Comparison between the present model and various authors for the armchair (8,8) configuration 

 
From Table 2 and Figure 5, it is clear that wall thickness has direct effect on stiffness. Larger walls lead to smaller 

Young’s modulus. Such hypothesis can be corroborated by Odergard et al. (2002) whom, based on equivalent-
continuum model, stated that Young’s modulus is inversely proportional to SWNT cross sectional area. Furthermore, Li 
and Chou (2006) attributed the variation among the three configurations to small differences on radius. Tserpes and 
Papanikos (2005), however, also called the attention to the chirality’s effect. According to them, the diameter effect is 
more evident on armchair and zigzag configurations, while the chiral form is less affected. With increasing tube 
diameter, the Young’s modulus of SWNTs increases but not with the same trend for all SWNTs. Such event is observed 
in Figure 6. This phenomenon was explained by Li and Chou (2003) as the nanotube curvature effect. The smaller the 
nanotube diameter the higher the curvature resulting in large distortion of the carbon–carbon (C–C) bonds and 
therefore, in large elongation (�h) of the nanotube. As diameter increases, the effect of curvature diminishes and the 
Young’s modulus of SWNTs approaches that of graphene sheet (1.1 TPa) when considering 0.34nm as the wall 
thickness, for which no effect of curvature is present.  The large discrepancy between the model prediction and the 
result presented by Hernandez et al. (1998) can be attributed to experimental inaccuracy during the measurements. Note 
that for the 0.34 nm the results are around 1.0 TPa.  
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Figure 6. Variation of the Young’s Modulus with nanotube diameter for armchair, zigzag and chiral configurations. 



The concept of representative element volume described by Tamma and Avila (1999) was employed to isolate a unit 
cell and analyze the stress distribution over it. For a carbon nanotube, the unit cell is represented by a set of C-C bonds 
rings. The number of sets is defined by the SWNT configuration. The largest normal stress for the armchair 
configuration, showed in Fig. 7a, is located into bond angle variation region. Meanwhile, the zigzag format, showed in 
Fig. 7b, has the largest normal stress distribution on dihedral angle torsion region. These finds agree with analytical 
predictions made by Lu and Zhang (2006) where pointed these locations as the ones with highest probability of failure. 
As expected the stress distribution for the chiral configuration, represented in Fig. 8, is much more complex, where to 
largest normal stress is found in different points along the SWNT length. 

As it was observed wall thickness does have effect on SWNT stiffness. Moreover, the SWNT radius influences the 
stiffness due to the curvature effect. Smaller radius implies larger curvature and consequently higher elongations and  
lower Young’s Modulus. When failure mechanism is analyzed, the normal stress distribution directs us to locus of 
higher probability of failure. Those regions are the bond angle variation for the armchair configuration, the dihedral 
angle torsion region for the zigzag case, while the chiral configuration showed different regions of failure probability. 
Figures 9-11 show the deformed view for each case studied. Notice that for chiral case, the final deformed shape is 
distinct from the two others. It is a clear indication of a more complex stress/strain distribution. 

  
 

 
Figure 7. Normal stress distribution on armchair and zigzag SWNT unit cell respectively. 

 
 

 
Figure 8. Normal stress distribution on chiral SWNT unit cell 
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Figure 9. Deformed shape on a (8,8) armchair SWNT 

 

 
Figure 10. Deformed shape on a (14,0) zigzag SWNT 

 

 
Figure 11. Deformed shape on a (11,5) chiral SWNT 

 
4. CONCLUSIONS 

 
A molecular mechanics model of armchair, zigzag and chiral single-walled carbon nanotubes has been 

implemented. The advantages of such approach are its easy implementation and considerably lower computational 
efforts when compared against other numerical techniques, e.g. molecular mechanics. The molecular structural 
mechanics approach was employed to exam the effect of wall thickness, diameter and chirality’s effect on SWNT 
stiffness. The results suggested that stiffness (Young’s modulus) is inversely proportional to wall thickness. Moreover, 
the curvature effect due to SWNT radius has also effect on stiffness. Smaller radius leads to larger curvatures and 
elongations. Meanwhile, on SWNT with large radius the curvature effect is negligible and Young’s modulus is about 
the same as the graphene sheet (� 1.0 TPa). The SWNT configuration less affected by the radius/curvature variations 
seems to be with chiral one due to its complex geometry.  The SWNT unit cell stress distributions also revealed critical 
regions where the failure is most likely to occur. For armchair case, it seems to be the bond angle variation region, 
while for the zigzag case the dihedral angle torsion region is the critical one. The chiral case presents a more complex 
distribution. The molecular structural mechanics approach is an effective atomistic modeling technique for simulating 
carbon nanotubes. Finally, this approach seems to be a powerful tool for modeling nanocomposites with accuracy. 
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