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Abstract. The use of viscoelastic materials in dynamic neutralizers (VDN) permits to construct devices with different 
forms and sizes, making them extremally usefull to control noise and vibrations in many types of structures. 
Considering the viscoelastic material caracteristics, this form of control device has proved to be very efficient in a 
wide frequency band. A general and robust method to design viscoelastic dynamic neutralizers (developed by the PISA-
CNPq group) considers: non-linear optimization tecnique, equivalent generalized parameters, the structure’s modal 
parameters and fractional derivatives based models for the viscoelastic material. Working in a modal subspace of the 
structure to be controled, it is possible to find the neutralizer’s optimal physical parameters such the struture’s 
response be minimized. In this process, the location of the neutralizers is predeterminated, once known the modal 
model for the structure. In certain applications, when the modal density of the structure is high or when the modes are 
coupled, the neutralizer’s placement is not so clear for the designer. In these cases, to find the best localization for the 
control devices can be fundamental. An example that illustrates this fact is the best neutralizer’s localization that are 
used in aerial cables of electric energy transmission. In this work, a general methodology is suggested allowing to 
determine, simultaneously, the localization and the optimal parameters of a neutralizer system. A numerical example 
on a steel plate is presented and its results commented. 
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1. Introduction  
 

Vibration neutralizers, also called vibration absorbers, are devices connected to other mechanical systems or 
structures, called primary systems, with the purpose to reduce vibrations and sound radiation. Since they had been used 
to reduce the roll movement in ships (Den Hartog, 1956), many works and applications related with dynamic 
neutralizers had appeared. With the modern technology of the viscoelastic materials, the vibration neutralizers have 
become easy to produce and apply to almost any structure, despite its complexity. Recently, a great effort has been 
made in the direction to generalize the theory of the vibration absorbers, applied to the more complex structures that 
those with only one degree of freedom and undamped, studied by Ormondroyd & Den Hartog (1928). 

In the work of Espíndola and Silva (1992), a general theory has been derived for the optimal design of a neutralizer 
system, when connected to a generic structure, with some distribution of damping. This theory has been applied for 
absorbers of several types (Espíndola and Silva, 1992; Freitas and Espíndola, 1993). The theory is based on the concept 
of the equivalent generalized quantities for neutralizers, introduced by Espíndola and Silva (1992). With this concept, it 
is possible to derive the equations of motion for the compound system (primary system + absorbers) in terms of 
generalized coordinates (degrees of freedom), previously chosen to describe the primary system, despite the fact of the 
compound system have degrees of freedom added. This fact allows the coordinates transformation using the primary 
system modal matrix, which is invariant during the optimization process of the neutralizers’ physical parameters. In the 
modal space of the primary structure, it is possible to work with only certain equations, enclosing the frequency band of 
interest. If the coupling between equations is not considered, the neutralizer system can be designed to be optimal for a 
particular mode, as in the method of simple optimization of Den Hartog (1956). 

Espíndola and Bavastri (1997) and Bavastri (1997), have introduced nonlinear optimization techniques (TONL). 
Bavastri, Espíndola and Teixeira (1998), using a hybrid algorithm (Genetic Algorithm and TONL), have developed a 
general technique for the optimal design of dynamic neutralizers in a frequency band. With this new approach, the 
control left of being projected mode to mode, like in Espíndola and Silva (1992). Now it is conceived in broad band of 
frequency, where one or more neutralizers can be designed simultaneously, to control one or more modes in the 
frequency band of interest. This methodology has been modified to ensure that the neutralizer’s optimal parameters are 
a global optimum. 



In those works, the localization of the neutralizer system in the structure is preset, once known the modal model of 
the structure. However, in some applications, when the modal density of the structure is increased or when the modes 
are sufficiently coupled, the localization of neutralizers is not so direct. In these cases, to find the best localization for 
the control devices can be fundamental. 

In this work, a general methodology is considered that allows determining, simultaneously, the localization and the 
optimal parameters of a neutralizer system. For such, the optimization technique applied to find the optimal localization 
of the neutralizer system will be Genetic Algorithms (GA). To be able to compare the different localizations, a 
technique of internal optimization that allows determining the optimal parameters of the control system must be 
derived. Thus, when the program converges, it is possible to determine, simultaneously, the localization and the optimal 
physical parameters of neutralizers. In this work, the numerical code developed by Bavastri (1997) is used as a sub-
routine. 
 
2. Equivalent Generalized Quantities for the Simple Absorber 

 
A simple neutralizer has a single lumped mass (ma) connected to a rigid massless base through a resilient device, 

assumed as having a viscoelastic nature (figure 1), with complex stiffness Kc(�) equal to (Espíndola and Silva, 1992): 
 

( ) ( ) ( ) ( )[ ]Ω+Ω=Ω=Ω ηiGGK cc 1�� . (1) 
 
In the equation (1), Gc(�) is the complex shear modulus of the viscoelastic material, G(�) is the dynamic shear 

modulus, �(�) is the loss factor of the material, � is the circular frequency and �  is a geometric factor that depends on 
the assembly of the viscoelastic material in the neutralizer device. The complex shear modulus is defined in accordance 
with the fractional derivative model with four parameters, as defined in Espíndola, et. al. (2005). 

 

 
 

Figure 1: One simple viscoelastic neutralizer. 
 
In figure 1, Q(�) e F(�) are the Fourier transform of the displacement of the base q(t) and the applied force f(t), 

respectively. This applied force results from the interaction between the neutralizer and the point of the structure where 
it is applied. 

The impedance Za(�) and the dynamic mass matrix Ma(�) are given respectively by: 
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The anti-resonance frequency for a simple neutralizer is defined as: 
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a
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a m

G Ω=ΩΩ �2 . (4) 

 
In equation 4, �a presents the anti-resonance frequency of the neutralizer. Notice that, in the absence of damping, 

Gc(�)=G(�). Thus, it can be said that: 
 

( ) )()( ΩΩ=Ω aac rGG �� , (5) 
 

where ra(�)=G(�)/G(�a). Equations 2 and 3 can now be rewritten. 
 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

( ) ( )[ ]
( ) ( )[ ]Ω+Ω−

Ω+ΩΩ−=Ω
ηε

ηε
ir

ir
imZ

aa

aa
aaa 1

1)(
2

 (6) 

 

( ) ( ) ( )[ ]
( ) ( )[ ]Ω+Ω−

Ω+Ω−=Ω
ηε

η
ir

ir
mM

aa

a
aa 1

1
2

 (7) 

 
where �a=�/�a. The equivalent viscous damping is defined as the real part of the impedance (6) and for a simple 
neutralizer, it is: 
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The equivalent mass, in the same way, is the real part of expression (7): 
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Thus, the two systems shown in figure 2 are dynamically equivalents (Espíndola and Silva, 1992). 

 

 
 

Figure 2: Equivalents systems. 
 
The primary system "feels" the neutralizer as being a equivalent mass me(�), dependent on frequency, attached to 

the generalized coordinate qj(t) and a equivalent viscous damper with constant ce(�), connected to the ground. 
Therefore, the dynamics of the resultant system (primary + neutralizer) can be formulated in terms of the 

generalized coordinates of the primary system, where Q(�) is representative, despite the new system now having added 
degrees of freedom. This is the main advantage of the generalized equivalent quantities concept. 

If many of these neutralizers are connected, the equation of motion can be rewritten as (see Bavastri, 1997 or 
Espíndola and Bavastri, 1995 and 1997): 
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Notice that the effect of coupling neutralizers falls again on modifications into the mass and damping matrices in the 

primary structure. The vector of the generalized coordinates of the primary system remains unchanged. To illustrate this 
idea, it is assumed that p neutralizers, with masses ma
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(p), are connected to p physical generalized 
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In equation (10), it is assumed the transformation, 
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, (13) 
 

where � is the modal matrix of the primary system, obtained numerically or experimentally. Its order is nxñ, where n is 
the number of degrees of freedom and ñ is the number of computed or measured eigenvectors. Normally ñ<<n. The 
vector ( )ΩP

~  is called the generalized coordinate, in the sub modal space of the primary system (ñx1). If equation (13) is 
introduced in equation (10) and pre-multiplied by �T, assuming proportional damping for the primary system, the result 
is: 
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where 
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In (15) �j is jth line of the matrix � e Fj(�) is the jth component of the vector F(�). In the equations (15) it is 

assumed that the eigenvectors of the primary structure are orthonormalized in relation to the mass matrix M (see 
Espíndola and Bavastri, 1997). �j are the natural frequencies of the primary structure and �j is the corresponding modal 
damping. Equation (14) represents a set of ñ<<n equations and can be resolved directly for any frequency with the use 
of equations 8 and 9. Returning to equation (13), it is obtained the solution in physical coordinates. Through equations 
(15), it is simple to show that: 
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in the case of orthonormalization. For a system with one degree of freedom, the reason of masses between the 
neutralizer and the primary system recommended by Den Hartog (1956) is �=ma/ms=0.1 to 0.25. For a system of 
multiple degrees of freedom this relation is given by (Espíndola and Silva, 1992): 
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where ma

(i) is the ith mass of neutralizer. The symbol mj represents jth modal mass of the primary system that, in the case 
of orthonormalization of the eigenvectors, is equal to one. In this work, the masses of neutralizers are defined by an 
arithmetic mean of ma

(i) calculated for each mode, inside the frequency band of interest. Considering all the masses 
equal (ma

(1)=...=ma
(p)), 
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where i=1,nm and nm is the number of modes in the frequency band of interest. 

 
3. Constitutive Equations for Viscoelastic Materials in Fractional Derivatives 

 
Equation (21) shows the definition of the called complex elasticity modulus, which is a function of the frequency. It 

is also function of the temperature, once its parameters are also dependents on the temperature. Being complex, Ec(�)  
can be written as: 
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where �(�)=E’(�)/E(�). 

E(�) is known as storage modulus of the viscoelastic material, E'(�) is the loss modulus and is associated with the 
capacity of the material to dissipate vibration energy. �(�) is called loss factor. The mathematical formulation in terms 
of fractional derivatives has a close relation with the molecular theories for the behavior of the viscoelastic materials 
(Bagley and Torvik, 1983). 

In this work, the model of four parameters, based on fractional derivatives is used for an optimal design of the 
physical parameters in viscoelastic neutralizers. The model can be written as (see Pritz, 1996): 
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Similarly, a model for the shear modulus will be: 
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or in an equivalent form: 
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where b=b1

1/� and G	=G1/b1. 
Equation (24) defines Gc(�) in terms of four parameters: G0, G	, b e �. The time dimensional parameter b is called 

relaxation constant of the material. 
 

4. Optimization of the Neutralizer’s Parameters in a Frequency Band. 
 
In the optimization process of the neutralizers’ physical parameters, the anti-resonance frequencies are considered as 

design parameters, while the masses of neutralizers are pre-established. Thus in Bavastri (1997), the design vector is 
defined by: 

 
( )apa

Tx ΩΩ= ,...,1 . (26) 

 
being p the number of components of the design vector of equation (26), assuming the same viscoelastic material to all 
neutralizers of the system. The objective function used in the optimization methodology (Espíndola and Bavastri, 1995): 
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where Pj(�, x) are the components of the main coordinates in the modal subspace of the primary system for each design 
vector x, and �1 and �2 are the inferior and superior limits of the frequency band of analysis. || ||2 is the Euclidian norm. 
As posed in Bavastri et al. (1998) this objective function is multimodal. After the optimization the stiffness of each 
neutralizer is given by: 

 
2

aiaai mk Ω= , where ma are the mass of neutralizers. (28) 
 

5. Genetic Algorithm. 
 
Briefly, a genetic algorithm (GA) is a search and optimization technique based on the natural selection. GA is 

equivalent to a numerical simulation of the Theory of the Evolution published by Charles Darwin in 1859. Holland 
(1975) was the first that considered the technique followed for Goldberg (1989) and others. 



The user of the algorithm must parametrize the environment indicating the ways for which a population can evolve. 
This environment parametrization consists of the search space and the rules for the population evolution constitute the 
called objective function, or optimization function. 

Inside of the search space, that in general is vast, some possible solutions are generated, in general of random form. 
These possible solutions are represented by points in the search space. This initial set of generated solutions represents 
the first population, or first generation. 

The general structure of the GA can be summarized figure 3. 
 

Begin 
     k = 0 
     Iniciate population Pk 
     Avaliate Pk 
     While stop criteria not satisfied 
      k = k + 1 
      Select parents in Pk-1 
      Aply crossing in Pk 
      Aply mutation in Pk 
      Avaliate Pk 
     Finish while 
    stop 

 
Figure 3. Typical computational structure of a genetic algorithm. 

 
The convergence of the method is guaranteed, even for multimodal problems, by the Theorem of the Schema or 

Basic Theorem of the Genetic Algorithms (Holland, 1975 and Goldberg, 1989). The schemata that possess superior 
aptitude to the average population will grow exponentially, in contrast of those with inferior aptitude to the average. 
These last ones will have increasing probabilities of extinguishing. The code of the GA used in this work has been 
developed by Carroll (2001) in FORTRAN 77 and updated for FORTRAN 90. 

In the present work, the objective function is multimodal and multi objective as it shows the next equation. 
 

2211 fwfwF +=  (29) 
 

where f1 is the minimum value of the objective function given in eq. (27). f2 is the value found for the mass of 
neutralizers added to the structure (all neutralizers of the system are designed with the same mass). 

As function F must to be minimized, then w1=-1 and w2, proposed in this work, is: 
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where Mstr is the total mass of the structure that needs to be controlled and f1=200 dB is adopted. In this way, to 
minimize F means to minimize f1 with the minimal mass of the neutralizers. 

 
6. Numerical Exemple. 

 
The described approach has been tested in a numerical application. The object of study was a plain plate of 

dimensions 600x400x5 mm made of steel with a total mass of 9.42 kg. The plate was simply supported at its four 
vertices. The modal model of the plate was produced by finite elements using a mesh of 294 elements of shell type 
(Ansys shell63) with 4 nodes totalizing 330 nodes. Then the eight first natural frequencies and its modes have been 
computed. Of this set, the first five modes have been used for analysis. All the extracted frequencies can be seen in table 
1. 

The viscoelastic material used for this simulations carried through this work has been neoprene and its main 
properties can be seen in table 2. 

 
Table 1. Natural frequencies of the plate. 

 
Natural 

frequency 
Hz Natural 

frequency 
Hz 

1st 30.717 5th 181.90 
2nd 74.070 6th 198.54 
3rd 88.982 7th 240.73 
4th 115.92 8th 309.93 

Table 2. Principal properties of neoprene. 
 

Viscoelastic 
material properties 

Neoprene 

G0 1.53x106 MPa 
G	 1.11x108 MPa 
b 1.864x10-5 s 
� 0.396 

 
The genetic algorithm employed the following parameters: population size, 7; number of generations, 400; crossover 

probability, 0.95; and mutation probability, 0.03, suggested by Carroll (2001). 



For the localization of the neutralizer system some nodes of the structure have been suppressed of the search space: 
the four nodes where the restrictions are applied and all nodes of the border of the plate. Therefore, only in the nodes 
inside the plate it is possible the place a neutralizer. 

It has been used the micro-genetic algorithm with elitism and sharing. The code used in this work, developed by 
Carroll (2001), contemplates this condition and is capable to work with the micro-genetic algorithm. 

With the objective to reduce the vibrations in the frequency band between 40 and 140 Hz, for the second, third and 
fourth modes (figure 5), a neutralizer system of such form has been design, aiming to reduce the response amplitude of 
vibration. Three different neutralizer systems have been proposed. The first system with just one neutralizer. Another 
with two neutralizers. And the last system with four neutralizers. 

 

 
          (a)     (b)         (c) 
 

Figure 4. (a) Second mode (b) Third mode and (c) Fourth mode 
 
Table 3 shows the results obtained for the three optimal designed systems. 
 

Table 3. Neutralizers systems 
 

Neutralizers System Neutralizer mass [g] Natural frequency [Hz] 
1 neutralizer 1128.9 43.3028 
2 neutralizers 212.26 58.4012 90.2262 
4 neutralizers 106.11 60.3491 69.3937 78.5895 82.3072 

 
In figure 6 the frequency response functions of the primary structure with and without optimal neutralizers are 

presented. As it has been expected, the optimal localization of neutralizers determined with the proposed methodology, 
is a peak at modes of natural frequency, inside of the interest frequency band. However, when more than one mode is 
being subjected to consideration (e.g. a peak of a mode is close to a node of another mode), the proposed methodology 
is capable of determining, simultaneously: i) the optimal position to locate the neutralizer; ii) the minimal mass for the 
neutralizer and iii) the optimal neutralizer physical parameters (anti resonant natural frequency). 

 

 
 

Figure 6. Reduction of vibration level accomplished by NDV’s system. 
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The localization of the neutralizer system can be seen in figure 7. This figure illustrates the representation in the 
plate’s fifth mode of vibration. 

 

 
           (a)     (b)       (c) 
 

Figure 7. Vibration neutralizer system location. (a) One neutralizer, (b) Two neutralizers and (c) Four neutralizers 
 

7. Conclusions. 
 

• A revision of the concepts used in the general methodology of viscoelastic optimal dynamic vibration 
neutralizer design has been presented. 

• A general methodology that allows optimizing, simultaneously, the localization and the optimal physical 
parameters of neutralizers has been proposed. This methodology is fundamental when there is a primary 
system with an increased modal density, inside the frequency band of interest. 

• A numerical example showing the effectiveness of this methodology to control the vibration in a frequency 
band considering three natural frequencies has been introduced. Three different cases have been shown, 
indicating promising results. 

• Despite being in its initial stages, this methodology revealed to be efficient for the optimal design of 
passive vibration control. 

 
8. Referencies 

 
Bagley, R.L. and Torvik, P.L., 1983. “A Generalized Derivative Model for an Elastomer Damper”, The Shock and 

Vibration Bulletin, 49(2): pp. 135-143. 
Bavastri, C.A, Espíndola, J.J., and Teixeira, P.H., 1998. “A Hybrid Algorithm to Compute the Optimal Parameters of a 

System of Viscoelastic Vibration Neutralisers in a Frequency Band”,  Proceedings of MOVIC’99, Ulm, Germany: 
pp. 251-258. 

Bavastri, C.A., 1997. “Wide Band Vibration Reduction on Complex Structures by Viscoelastic Neutralizers”, Phd. 
Thesis, UFSC, Florianópolis, Brasil. 

Carroll, D., 2001. http://cuaerospace.com/carroll/ga.html, CU Aerospace, 2004 South Wright Street Extended, Urbana, 
IL 61802, USA. 

Den Hartog, J.P., 1956, “Mechanical Vibrations”, New York, McGraw-Hill. 
Espíndola, J. J., Méndez, G.A.C., Lopes, E. M. O. and Bavastri, C. A., 2005. Design of Optimum Viscoelastic Vibration 

Absorbers based on the Fractional Calculus Model. In: XI DINAME, 2005, Ouro Preto. Proceedings of the 
International Symposium on Dynamic Problems of Mechanics, v. DIN026. 

Espíndola, J.J. and Bavastri, C.A., 1997. “Viscoelastic Neutralisers in Vibration Abatement: non-linear optimization 
approach”, Journal of the Brazilian Society of Mechanical Sciences, Vol. XIX(2): pp. 154-163. 

Espíndola, J.J. and Silva, H.P., 1992. “Modal Reduction of Vibration by Dynamics Neutralizers”, Proc. Of The Tenth 
Internacional Modal Analysis Conference”, San Diego, USA: pp. 1367-1373. 

Espíndola, J.J., Silva Neto, J.M. and Lopes, E.M.O., 2004. “A New Approach to Viscoelastic Material Properties 
Identification Based on the Fractional Derivative Model”, Proceedings of First IFAC Workshop on Fractional 
Differenciation and its Application (FDA’04)”, Bordeaux, França, Julho: pp. 19-21. 

Freitas, F.L. and Espíndola, J.J., 1993. “Noise and Vibration Reduction with Beam-Like Dynamic Neutralizers”, 12th 
Brazilian Congress of Mechanical Engineering. 

Goldberg, D. E., 1989, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley. 
Holland, H., 1975, “Adaptation in Natural and Artificial Systems”, Ann Arbor, The University of Michigan Press. 
Krishnakumar, K., 1989. “Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization”, SPIE 

1196, Inteligent Control and Adaptative Systems. 
Ormondroyd, J. and Den Hartog, J.P., 1928. “The Theory of Dynamic Vibration Absorbers”, Journal of Applied 

Mechanics, Trans. ASME, Vol. 49: pp. A9-A22. 
Pritz, T., 1996. “Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials”, Journal of Sound 

and Vibration, Vol. 195(1): pp. 103-115. 


